PCA {templateICAr} | R Documentation |
PCA
Description
Efficient PCA for a tall matrix (many more rows than columns). Uses the SVD of the covariance matrix.
Usage
PCA(X, center = TRUE, Q = NULL, Q_max = 100, nV = 0)
Arguments
X |
|
center |
Center the columns of |
Q |
Number of latent dimensions to estimate. If |
Q_max |
Maximal number of principal components for automatic
dimensionality selection with PESEL. Default: |
nV |
Number of principal directions to obtain. Default: |
Value
The SVD decomposition
[Package templateICAr version 0.6.4 Index]