Fit and Tune Models to Detect Treatment Effect Heterogeneity


[Up] [Top]

Documentation for package ‘tehtuner’ version 0.3.0

Help Pages

get_mnpp Get the MNPP for the Step 2 model
get_mnpp.classtree Get the MNPP for a Classification Tree
get_mnpp.ctree Get the MNPP for a Conditional Inference Tree
get_mnpp.lasso Get the MNPP for a Model fit via Lasso
get_mnpp.rtree Get the MNPP for a Regression Tree
get_theta_null Permute a dataset under the null hypothesis and get the MNPP
get_vt1 Get the appropriate Step 1 estimation function associated with a method
get_vt2 Get the appropriate Step 2 estimation function associated with a method
permute Generate a dataset with permuted treatment indicators
print.tunevt Print an object of class tunevt
tehtuner_example Simulated example data
test_null_theta_ctree Test if a Value Gives a Null Conditional Inference Tree
tunevt Fit a tuned Virtual Twins model
tune_theta Estimate the penalty parameter for Step 2 of Virtual Twins
validate_alpha0 Check if alpha0 is a valid input to tunevt
validate_p_reps Check if p_reps is a valid input to tunevt
validate_Trt Check if Trt is a valid input to tunevt
validate_Y Check if Y is a valid input to tunevt
vt1_lasso Estimate the CATE Using the Lasso for Step 1 of Virtual Twins
vt1_mars Estimate the CATE Using MARS for Step 1 of Virtual Twins
vt1_rf Estimate the CATE Using a Random Forest for Step 1 of Virtual Twins
vt1_super Estimate the CATE Using Super Learner for Step 1 of Virtual Twins
vt2_classtree Estimate the CATE using a classification tree for Step 2
vt2_ctree Estimate the CATE using a conditional inference tree for Step 2
vt2_lasso Estimate the CATE using the Lasso for Step 2
vt2_rtree Estimate the CATE using a regression tree for Step 2