get_mnpp |
Get the MNPP for the Step 2 model |
get_mnpp.classtree |
Get the MNPP for a Classification Tree |
get_mnpp.ctree |
Get the MNPP for a Conditional Inference Tree |
get_mnpp.lasso |
Get the MNPP for a Model fit via Lasso |
get_mnpp.rtree |
Get the MNPP for a Regression Tree |
get_theta_null |
Permute a dataset under the null hypothesis and get the MNPP |
get_vt1 |
Get the appropriate Step 1 estimation function associated with a method |
get_vt2 |
Get the appropriate Step 2 estimation function associated with a method |
permute |
Generate a dataset with permuted treatment indicators |
print.tunevt |
Print an object of class tunevt |
tehtuner_example |
Simulated example data |
test_null_theta_ctree |
Test if a Value Gives a Null Conditional Inference Tree |
tunevt |
Fit a tuned Virtual Twins model |
tune_theta |
Estimate the penalty parameter for Step 2 of Virtual Twins |
validate_alpha0 |
Check if alpha0 is a valid input to tunevt |
validate_p_reps |
Check if p_reps is a valid input to tunevt |
validate_Trt |
Check if Trt is a valid input to tunevt |
validate_Y |
Check if Y is a valid input to tunevt |
vt1_lasso |
Estimate the CATE Using the Lasso for Step 1 of Virtual Twins |
vt1_mars |
Estimate the CATE Using MARS for Step 1 of Virtual Twins |
vt1_rf |
Estimate the CATE Using a Random Forest for Step 1 of Virtual Twins |
vt1_super |
Estimate the CATE Using Super Learner for Step 1 of Virtual Twins |
vt2_classtree |
Estimate the CATE using a classification tree for Step 2 |
vt2_ctree |
Estimate the CATE using a conditional inference tree for Step 2 |
vt2_lasso |
Estimate the CATE using the Lasso for Step 2 |
vt2_rtree |
Estimate the CATE using a regression tree for Step 2 |