tm_t_binary_outcome {teal.modules.clinical} | R Documentation |
teal Module: Binary Outcome Table
Description
This module produces a binary outcome response summary table, with the option to match the template for
response table RSPT01
available in the TLG Catalog here.
Usage
tm_t_binary_outcome(
label,
dataname,
parentname = ifelse(test = inherits(arm_var, "data_extract_spec"), yes =
teal.transform::datanames_input(arm_var), no = "ADSL"),
arm_var,
arm_ref_comp = NULL,
paramcd,
strata_var,
aval_var = teal.transform::choices_selected(choices =
teal.transform::variable_choices(dataname, c("AVALC", "SEX")), selected = "AVALC",
fixed = FALSE),
conf_level = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order =
TRUE),
default_responses = c("CR", "PR", "Y", "Complete Response (CR)",
"Partial Response (PR)", "M"),
rsp_table = FALSE,
control = list(global = list(method = ifelse(rsp_table, "clopper-pearson", "waldcc"),
conf_level = 0.95), unstrat = list(method_ci = ifelse(rsp_table, "wald", "waldcc"),
method_test = "schouten", odds = TRUE), strat = list(method_ci = "cmh", method_test =
"cmh")),
add_total = FALSE,
total_label = default_total_label(),
na_level = default_na_str(),
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args()
)
Arguments
label |
( |
dataname |
( |
parentname |
( |
arm_var |
( |
arm_ref_comp |
( |
paramcd |
( |
strata_var |
( |
aval_var |
( |
conf_level |
( |
default_responses |
( |
rsp_table |
( |
control |
(named
|
add_total |
( |
total_label |
( |
na_level |
( |
pre_output |
( |
post_output |
( |
basic_table_args |
( |
Details
The display order of response categories inherits the factor level order of the source data. Use
base::factor()
and itslevels
argument to manipulate the source data in order to include/exclude or re-categorize response categories and arrange the display order. If response categories are"Missing"
,"Not Evaluable (NE)"
, or"Missing or unevaluable"
, 95% confidence interval will not be calculated.Reference arms are automatically combined if multiple arms selected as reference group.
Value
a teal_module
object.
See Also
The TLG Catalog where additional example apps implementing this module can be found.
Examples
library(dplyr)
ADSL <- tmc_ex_adsl
ADRS <- tmc_ex_adrs %>%
mutate(
AVALC = d_onco_rsp_label(AVALC) %>%
with_label("Character Result/Finding")
) %>%
filter(PARAMCD != "OVRINV" | AVISIT == "FOLLOW UP")
arm_ref_comp <- list(
ARMCD = list(ref = "ARM B", comp = c("ARM A", "ARM C")),
ARM = list(ref = "B: Placebo", comp = c("A: Drug X", "C: Combination"))
)
app <- init(
data = cdisc_data(
ADSL = ADSL,
ADRS = ADRS,
code = "
ADSL <- tmc_ex_adsl
ADRS <- tmc_ex_adrs %>%
mutate(
AVALC = d_onco_rsp_label(AVALC) %>%
with_label(\"Character Result/Finding\")
) %>%
filter(PARAMCD != \"OVRINV\" | AVISIT == \"FOLLOW UP\")
"
),
modules = modules(
tm_t_binary_outcome(
label = "Responders",
dataname = "ADRS",
paramcd = choices_selected(
choices = value_choices(ADRS, "PARAMCD", "PARAM"),
selected = "BESRSPI"
),
arm_var = choices_selected(
choices = variable_choices(ADRS, c("ARM", "ARMCD", "ACTARMCD")),
selected = "ARM"
),
arm_ref_comp = arm_ref_comp,
strata_var = choices_selected(
choices = variable_choices(ADRS, c("SEX", "BMRKR2", "RACE")),
selected = "RACE"
),
default_responses = list(
BESRSPI = list(
rsp = c("Complete Response (CR)", "Partial Response (PR)"),
levels = c(
"Complete Response (CR)", "Partial Response (PR)",
"Stable Disease (SD)", "Progressive Disease (PD)"
)
),
INVET = list(
rsp = c("Stable Disease (SD)", "Not Evaluable (NE)"),
levels = c(
"Complete Response (CR)", "Not Evaluable (NE)", "Partial Response (PR)",
"Progressive Disease (PD)", "Stable Disease (SD)"
)
),
OVRINV = list(
rsp = c("Progressive Disease (PD)", "Stable Disease (SD)"),
levels = c("Progressive Disease (PD)", "Stable Disease (SD)", "Not Evaluable (NE)")
)
)
)
)
)
if (interactive()) {
shinyApp(app$ui, app$server)
}