olc {tci} | R Documentation |
Simulate open-loop control
Description
Simulate open-loop control with target-controlled infusion for a 'pkmod' object. Infusion rates are calculated using 'pkmod_prior' to reach 'target_vals' at 'target_tms'. Data values are simulated using 'pkmod_true' at 'obs_tms'. 'pkmod_prior' and 'pkmod_true' do not need to have the same structure.
Usage
olc(
pkmod_prior,
pkmod_true,
target_vals,
target_tms,
obs_tms,
type = c("effect", "plasma"),
custom_alg = NULL,
resp_bounds = NULL,
seed = NULL
)
Arguments
pkmod_prior |
'pkmod' object describing a PK/PK-PD model that is used to calculate TCI infusion rates and is updated as data are simulated and incorporated. Must have an associated Omega matrix. |
pkmod_true |
‘pkmod' object describing the patient’s "true" response. This model will be used to simulate observations. |
target_vals |
A vector of numeric values indicating PK or PD targets for TCI algorithm. |
target_tms |
A vector of numeric values indicating times at which the TCI algorithm should begin targeting each value. |
obs_tms |
Times at which data values should be simulated from 'pkmod_true'. |
type |
Type of TCI algorithm to be used. Options are "plasma" and "effect". Defaults to "effect". Will be overwritten if 'custom_alg' is non-null. |
custom_alg |
Custom TCI algorithm to overwrite default plasma- or effect-site targeting. |
resp_bounds |
Optional vector of two values indicating minimum and maximum values possible for the response. |
seed |
An integer used to initialize the random number generator. |
Examples
pkmod_prior <- pkmod(pars_pk = c(cl = 10, q2 = 2, q3 =20, v = 15, v2 = 30, v3 = 50, ke0 = 1.2))
pkmod_true <- pkmod(pars_pk = c(cl = 16, q2 = 4, q3 =10, v = 20, v2 = 20, v3 = 80, ke0 = 0.8),
sigma_add = 0.1, log_response = TRUE)
target_vals <- c(2,3,4,3,3)
target_tms <- c(0,5,10,36,60)
obs_tms <- c(1,2,4,8,12,16,24,36,48)
sim <- olc(pkmod_prior, pkmod_true, target_vals, target_tms, obs_tms)
len <- 500
tms <- seq(0,60,length.out = len)
df <- data.frame(time = rep(tms,2),
value = c(predict(pkmod_true, sim$inf,tms)[,1],
predict(pkmod_prior, sim$inf,tms)[,1]),
type = c(rep("true",len),rep("prior",len)))
library(ggplot2)
ggplot(df, aes(x = time, y = value, color = type)) +
geom_step(data = data.frame(time = target_tms, value = target_vals),
aes(x = time, y = value), inherit.aes = FALSE) +
geom_line() +
geom_point(data = sim$obs, aes(x = time, y = obs), inherit.aes = FALSE)