| cv {targeted} | R Documentation | 
Cross-validation
Description
Generic cross-validation function
Usage
cv(
  models,
  data,
  response = NULL,
  nfolds = 5,
  rep = 1,
  weights = NULL,
  modelscore,
  seed = NULL,
  shared = NULL,
  args.pred = NULL,
  args.future = list(),
  mc.cores,
  ...
)
Arguments
models | 
 List of fitting functions  | 
data | 
 data.frame or matrix  | 
response | 
 Response variable (vector or name of column in   | 
nfolds | 
 Number of folds (default 5. K=0 splits in 1:n/2, n/2:n with last part used for testing)  | 
rep | 
 Number of repetitions (default 1)  | 
weights | 
 Optional frequency weights  | 
modelscore | 
 Model scoring metric (default: MSE / Brier score). Must be a function with arguments: response, prediction, weights, ...  | 
seed | 
 Random seed (argument parsed to future_Apply::future_lapply)  | 
shared | 
 Function applied to each fold with results send to each model  | 
args.pred | 
 Optional arguments to prediction function (see details below)  | 
args.future | 
 Arguments to future.apply::future_mapply  | 
mc.cores | 
 Optional number of cores. parallel::mcmapply used instead of future  | 
... | 
 Additional arguments parsed to models in models  | 
Details
models should be list of objects of class ml_model. Alternatively, each element of models should be a list with a fitting function and a prediction function.
The response argument can optionally be a named list where the name is
then used as the name of the response argument in models. Similarly, if data
is a named list with a single data.frame/matrix then this name will be used
as the name of the data/design matrix argument in models.
Value
An object of class 'cross_validated' is returned. See
cross_validated-class for more details about this class and
its generic functions.
Author(s)
Klaus K. Holst
Examples
f0 <- function(data,...) lm(...,data=data)
f1 <- function(data,...) lm(Sepal.Length~Species,data=data)
f2 <- function(data,...) lm(Sepal.Length~Species+Petal.Length,data=data)
x <- cv(list(m0=f0,m1=f1,m2=f2),rep=10, data=iris, formula=Sepal.Length~.)
x