scoring {targeted} | R Documentation |
Predictive model scoring
Description
Predictive model scoring
Usage
scoring(
response,
...,
type = "quantitative",
levels = NULL,
metrics = NULL,
weights = NULL,
names = NULL,
messages = 1
)
Arguments
response |
Observed response |
... |
model predictions (continuous predictions or class probabilities (matrices)) |
type |
continuous or categorical response (the latter is automatically chosen if response is a factor, otherwise a continuous response is assumed) |
levels |
(optional) unique levels in response variable |
metrics |
which metrics to report |
weights |
optional frequency weights |
names |
optional names of models coments (given as ..., alternatively these can be named arguments) |
messages |
controls amount of messages/warnings (0: none) |
Value
Numeric matrix of dimension m x p, where m is the number of different models and p is the number of model metrics
Examples
data(iris)
set.seed(1)
dat <- csplit(iris,2)
g1 <- NB(Species ~ Sepal.Width + Petal.Length, data=dat[[1]])
g2 <- NB(Species ~ Sepal.Width, data=dat[[1]])
pr1 <- predict(g1, newdata=dat[[2]], wide=TRUE)
pr2 <- predict(g2, newdata=dat[[2]], wide=TRUE)
table(colnames(pr1)[apply(pr1,1,which.max)], dat[[2]]$Species)
table(colnames(pr2)[apply(pr2,1,which.max)], dat[[2]]$Species)
scoring(dat[[2]]$Species, pr1=pr1, pr2=pr2)
## quantitative response:
scoring(response=1:10, prediction=rnorm(1:10))
[Package targeted version 0.5 Index]