| similarity {tabula} | R Documentation |
Similarity
Description
Similarity
Usage
similarity(object, ...)
## S4 method for signature 'matrix'
similarity(
object,
method = c("brainerd", "bray", "jaccard", "morisita", "sorenson", "binomial")
)
## S4 method for signature 'data.frame'
similarity(
object,
method = c("brainerd", "bray", "jaccard", "morisita", "sorenson", "binomial")
)
Arguments
object |
A |
... |
Currently not used. |
method |
A |
Details
\beta-diversity can be measured by addressing similarity
between pairs of samples/cases (Brainerd-Robinson, Jaccard, Morisita-Horn
and Sorenson indices). Similarity between pairs of taxa/types can be
measured by assessing the degree of co-occurrence (binomial co-occurrence).
Jaccard, Morisita-Horn and Sorenson indices provide a scale of similarity
from 0-1 where 1 is perfect similarity and 0 is
no similarity. The Brainerd-Robinson index is scaled between 0 and
200. The Binomial co-occurrence assessment approximates a Z-score.
binomialbrainerdbrayjaccardmorisitasorenson
Value
A stats::dist object.
Author(s)
N. Frerebeau
References
Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton, NJ: Princeton University Press. doi:10.1007/978-94-015-7358-0.
See Also
index_binomial(), index_brainerd(), index_bray(),
index_jaccard(), index_morisita(), index_sorenson()
Other diversity measures:
heterogeneity(),
occurrence(),
profiles(),
rarefaction(),
richness(),
she(),
simulate(),
turnover()
Examples
## Data from Huntley 2004, 2008
data("pueblo")
## Brainerd-Robinson measure
(C <- similarity(pueblo, "brainerd"))
plot_spot(C)
## Data from Magurran 1988, p. 166
data("aves")
## Jaccard measure (presence/absence data)
similarity(aves, "jaccard") # 0.46
## Sorenson measure (presence/absence data)
similarity(aves, "sorenson") # 0.63
# Jaccard measure (Bray's formula ; count data)
similarity(aves, "bray") # 0.44
# Morisita-Horn measure (count data)
similarity(aves, "morisita") # 0.81