similarity {tabula} | R Documentation |
Similarity
Description
Similarity
Usage
similarity(object, ...)
## S4 method for signature 'matrix'
similarity(
object,
method = c("brainerd", "bray", "jaccard", "morisita", "sorenson", "binomial")
)
## S4 method for signature 'data.frame'
similarity(
object,
method = c("brainerd", "bray", "jaccard", "morisita", "sorenson", "binomial")
)
Arguments
object |
A |
... |
Currently not used. |
method |
A |
Details
\beta
-diversity can be measured by addressing similarity
between pairs of samples/cases (Brainerd-Robinson, Jaccard, Morisita-Horn
and Sorenson indices). Similarity between pairs of taxa/types can be
measured by assessing the degree of co-occurrence (binomial co-occurrence).
Jaccard, Morisita-Horn and Sorenson indices provide a scale of similarity
from 0
-1
where 1
is perfect similarity and 0
is
no similarity. The Brainerd-Robinson index is scaled between 0
and
200
. The Binomial co-occurrence assessment approximates a Z-score.
binomial
brainerd
bray
jaccard
morisita
sorenson
Value
A stats::dist object.
Author(s)
N. Frerebeau
References
Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton, NJ: Princeton University Press. doi:10.1007/978-94-015-7358-0.
See Also
index_binomial()
, index_brainerd()
, index_bray()
,
index_jaccard()
, index_morisita()
, index_sorenson()
Other diversity measures:
heterogeneity()
,
occurrence()
,
profiles()
,
rarefaction()
,
richness()
,
she()
,
simulate()
,
turnover()
Examples
## Data from Huntley 2004, 2008
data("pueblo")
## Brainerd-Robinson measure
(C <- similarity(pueblo, "brainerd"))
plot_spot(C)
## Data from Magurran 1988, p. 166
data("aves")
## Jaccard measure (presence/absence data)
similarity(aves, "jaccard") # 0.46
## Sorenson measure (presence/absence data)
similarity(aves, "sorenson") # 0.63
# Jaccard measure (Bray's formula ; count data)
similarity(aves, "bray") # 0.44
# Morisita-Horn measure (count data)
similarity(aves, "morisita") # 0.81