| index_simpson {tabula} | R Documentation |
Simpson Dominance Index
Description
Simpson Dominance Index
Usage
index_simpson(x, ...)
## S4 method for signature 'numeric'
index_simpson(x, evenness = FALSE, unbiased = FALSE, na.rm = FALSE, ...)
Arguments
x |
A |
... |
Currently not used. |
evenness |
A |
unbiased |
A |
na.rm |
A |
Details
The Simpson index expresses the probability that two individuals randomly
picked from a finite sample belong to two different types. It can be
interpreted as the weighted mean of the proportional abundances. This
metric is a true probability value, it ranges from 0 (all taxa are
equally present) to 1 (one taxon dominates the community completely).
This is a dominance index, so that an increase in the value of the index accompanies a decrease in diversity.
Value
A numeric vector.
Author(s)
N. Frerebeau
References
Simpson, E. H. (1949). Measurement of Diversity. Nature, 163(4148), 688-688. doi:10.1038/163688a0.
See Also
Other alpha diversity measures:
index_ace(),
index_baxter(),
index_berger(),
index_boone(),
index_brillouin(),
index_chao1(),
index_chao2(),
index_hurlbert(),
index_ice(),
index_margalef(),
index_mcintosh(),
index_menhinick(),
index_shannon(),
index_squares()