index_simpson {tabula} | R Documentation |
Simpson Dominance Index
Description
Simpson Dominance Index
Usage
index_simpson(x, ...)
## S4 method for signature 'numeric'
index_simpson(x, evenness = FALSE, unbiased = FALSE, na.rm = FALSE, ...)
Arguments
x |
A |
... |
Currently not used. |
evenness |
A |
unbiased |
A |
na.rm |
A |
Details
The Simpson index expresses the probability that two individuals randomly
picked from a finite sample belong to two different types. It can be
interpreted as the weighted mean of the proportional abundances. This
metric is a true probability value, it ranges from 0
(all taxa are
equally present) to 1
(one taxon dominates the community completely).
This is a dominance index, so that an increase in the value of the index accompanies a decrease in diversity.
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Simpson, E. H. (1949). Measurement of Diversity. Nature, 163(4148), 688-688. doi:10.1038/163688a0.
See Also
Other alpha diversity measures:
index_ace()
,
index_baxter()
,
index_berger()
,
index_boone()
,
index_brillouin()
,
index_chao1()
,
index_chao2()
,
index_hurlbert()
,
index_ice()
,
index_margalef()
,
index_mcintosh()
,
index_menhinick()
,
index_shannon()
,
index_squares()