zoomStar {symbolicDA} | R Documentation |
zoom star chart for symbolic data
Description
plot in a form of zoom star chart for symbolic object described by interval-valued, multivalued and modal variables
Usage
zoomStar(table.Symbolic, j, variableSelection=NULL, offset=0.2,
firstTick=0.2, labelCex=.8, labelOffset=.7, tickLength=.3, histWidth=0.04,
histHeight=2, rotateLabels=TRUE, variableCex=NULL)
Arguments
table.Symbolic |
symbolic data table |
j |
symbolic object number in symbolic data table used to create the chart |
variableSelection |
numbers of symbolic variables describing symbolic object used to create the chart, if NULL all variables are used |
offset |
relational offset of chart (margin size) |
firstTick |
place of first tick (relational to lenght of axis) |
labelCex |
labels cex parameter of labels |
labelOffset |
relational offset of labels |
tickLength |
relational length of single tick of axis |
histWidth |
histogram (for modal variables) relational width |
histHeight |
histogram (for modal variables) relational heigth |
rotateLabels |
if TRUE labels are rotated due to rotation of axes |
variableCex |
cex parameter of names of variables |
Value
zoom star chart for selected symbolic object in which each axis represents a symbolic variable. Depending on the type of symbolic variable their implementations are presented as:
a) rectangle - interval range of interval-valued variable),
b) circles - categories of multinominal (or multinominal with weights) variable from among coloured circles means categories of the variable observed for the selected symbolic object
bar chart - additional chart for multinominal with weights variable in which each bar represents a weight (percentage share) of a category of the variable
Author(s)
Andrzej Dudek andrzej.dudek@ue.wroc.pl, Justyna Wilk justyna.wilk@ue.wroc.pl Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/symbolicDA/
References
Bock, H.H., Diday, E. (eds.) (2000), Analysis of symbolic data. Explanatory methods for extracting statistical information from complex data, Springer-Verlag, Berlin.
Diday, E., Noirhomme-Fraiture, M. (eds.) (2008), Symbolic Data Analysis with SODAS Software, John Wiley & Sons, Chichester.
See Also
plotInterval
in clusterSim
Examples
# LONG RUNNING - UNCOMMENT TO RUN
# Example 1
#data("cars",package="symbolicDA")
#sdt<-cars
#zoomStar(sdt, j=12)
# Example 2
#data("cars",package="symbolicDA")
#sdt<-cars
#variables<-as.matrix(sdt$variables)
#indivN<-as.matrix(sdt$indivN)
#dist<-as.matrix(dist_SDA(sdt))
#classes<-DClust(dist, cl=5, iter=100)
#for(i in 1:max(classes)){
#getOption("device")()
#zoomStar(sdt, .medoid2(dist, classes, i))}