draw.decisionTree.SDA {symbolicDA} | R Documentation |
Draws optimal split based decision tree for symbolic objects
Description
Draws optimal split based decision tree for symbolic objects
Usage
draw.decisionTree.SDA(decisionTree.SDA,boxWidth=1,boxHeight=3)
Arguments
decisionTree.SDA |
optimal split based decision tree for symbolic objects (result of |
boxWidth |
witdh of single box in drawing |
boxHeight |
height of single box in drawing |
Details
Draws optimal split based decision (classification) tree for symbolic objects.
Value
A draw of optimal split based decision (classification) tree for symbolic objects.
Author(s)
Andrzej Dudek andrzej.dudek@ue.wroc.pl Marcin Pełka marcin.pelka@ue.wroc.pl
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland http://keii.ue.wroc.pl/symbolicDA/
References
Billard L., Diday E. (eds.) (2006), Symbolic Data Analysis, Conceptual Statistics and Data Mining, John Wiley & Sons, Chichester.
Bock H.H., Diday E. (eds.) (2000), Analysis of symbolic data. Explanatory methods for extracting statistical information from complex data, Springer-Verlag, Berlin.
Diday E., Noirhomme-Fraiture M. (eds.) (2008), Symbolic Data Analysis with SODAS Software, John Wiley & Sons, Chichester.
See Also
Examples
# LONG RUNNING - UNCOMMENT TO RUN
# Files samochody.xml and wave.xml needed in this example
# can be found in /inst/xml library of package
# Example 1
#sda<-parse.SO("samochody")
#tree<-decisionTree.SDA(sda, "Typ_samochodu~.", testSet=26:33)
#draw.decisionTree.SDA(tree,boxWidth=1,boxHeight=3)
# Example 2
#sda<-parse.SO("wave")
#tree<-decisionTree.SDA(sda, "WaveForm~.", testSet=1:30)
#draw.decisionTree.SDA(tree,boxWidth=2,boxHeight=3)