IPCWdf {survivalREC} | R Documentation |
Inverse probability of censoring weighting estimator for the bivariate distribution function.
Description
Provides estimates for the bivariate distribution function based on the Inverse Probability of Censoring Weighting estimator (IPCW).
Usage
IPCWdf(object, x, y, covariate, cov.value, bw, window = "gaussian")
Arguments
object |
An object of class multidf. |
x |
The first time for obtaining estimates for the bivariate distribution function. |
y |
The second time for obtaining estimates for the bivariate distribution function. |
covariate |
Name of the quantitative covariate. |
cov.value |
The value of the quantitative covariate. |
bw |
A single numeric value to compute a kernel density bandwidth. Use
|
window |
A character string specifying the desired kernel. See details
below for possible options. Defaults to |
Value
Vector with the IPWC estimates for the bivariate distribution function.
Author(s)
Gustavo Soutinho and Luis Meira-Machado.
Gustavo Soutinho and Luis Meira-Machado
References
de Una-Alvarez, J. and Meira-Machado, L. (2008). A simple estimator of the bivariate distribution function for censored gap times, Statistics and Probability Letters 78, 2440-2445.
See Also
KMWdf
, LDMdf
, LINdf
and
WCHdf
.
Examples
data("bladder4state")
b3state<-multidf(gap1=bladder4state$y1, event1=bladder4state$d1,
gap2=bladder4state$y2, status=bladder4state$d2,
size=bladder4state$size)
b3size<-multidf(gap1=bladder3$t1, event1=bladder3$d1,
gap2=bladder3$t2-bladder3$t1,status=bladder4state$d2,
size=bladder3$size)
library(KernSmooth)
IPCWdf(object=b3state, x=13, y=15, covariate="size", cov.value=3,
window = "gaussian")
IPCWdf(object=b3state, x=13, y=15, covariate="size", bw=2, cov.value=3,
window = "gaussian")
IPCWdf(object=b3size, x=13, y=15, covariate="size", cov.value=3,
window = "gaussian")
IPCWdf(object=b3size, x=13, y=15, covariate="size", bw=2, cov.value=3,
window = "gaussian")