survsrf_cv {survcompare} | R Documentation |
Cross-validates SRF model
Description
Cross-validates SRF model
Usage
survsrf_cv(
df,
predict.factors,
fixed_time = NaN,
outer_cv = 3,
repeat_cv = 2,
randomseed = NULL,
return_models = FALSE,
inner_cv = 3,
srf_tuning = list(),
oob = TRUE
)
Arguments
df |
data frame with the data, "time" and "event" for survival outcome |
predict.factors |
list of predictor names |
fixed_time |
at which performance metrics are computed |
outer_cv |
k in k-fold CV, default 3 |
repeat_cv |
if NULL, runs once, otherwise repeats CV |
randomseed |
random seed |
return_models |
TRUE/FALSE, if TRUE returns all CV objects |
inner_cv |
k in the inner loop of k-fold CV for SRF hyperparameters tuning, default is 3 |
srf_tuning |
list of tuning parameters for random forest: 1) NULL for using a default tuning grid, or 2) a list("mtry"=c(...), "nodedepth" = c(...), "nodesize" = c(...)) |
oob |
TRUE/FALSE use out-of-bag prediction accuracy while tuning instead of cross-validation, TRUE by default |
Value
list of outputs
Examples
df <- simulate_nonlinear()
srf_cv <- survsrf_cv(df, names(df)[1:4])
summary(srf_cv)
[Package survcompare version 0.1.2 Index]