interactive_plot {success} | R Documentation |
Plot a list of CUSUM charts (interactive)
Description
Create an interactive plot visualizing a combination of control charts which can be created using this package.
Usage
interactive_plot(x, unit_names, scale = FALSE, group_by = c("none", "unit",
"type"), highlight = FALSE, manual_colors = c(), ...)
Arguments
x |
A list with each item containing one cumulative sum chart. |
unit_names |
The unit names to be displayed in the interactive plot.
Must be of equal length as |
scale |
Should charts be scaled with respect to their control limit/
maximum value? Default is |
group_by |
Character indicating how to group the CUSUM charts in the plot.
Possible values are |
highlight |
Should charts be highlighted on hover? Default is |
manual_colors |
A character vector specifying which colors to use
for the units in the data. By default, the "Set2" color set from
|
... |
Further plotting parameters |
Value
An interactive plot will be produced in the current graphics device. For more information on the possibilities for interaction, see https://plotly.com/r/.
See Also
cgr_cusum
, bk_cusum
, bernoulli_cusum
, funnel_plot
Examples
require(survival)
#Extract data to construct CUSUM charts on
tdat <- subset(surgerydat, unit == 1 & entrytime < 365)
tdat2 <- subset(surgerydat, unit == 2 & entrytime < 365)
#Determine model parameters
followup <- 100
tcbaseh <- function(t) chaz_exp(t, lambda = 0.01)
exprfit <- as.formula("Surv(survtime, censorid) ~ age + sex + BMI")
tcoxmod <- coxph(exprfit, data= surgerydat)
exprfitber <- as.formula("(survtime <= followup) & (censorid == 1)~ age + sex + BMI")
glmmodber <- glm(exprfitber, data = surgerydat, family = binomial(link = "logit"))
#Construct the charts
cgr <- cgr_cusum(data = tdat, coxphmod = tcoxmod, cbaseh = tcbaseh, pb = TRUE)
cgr$h <- 8.29
bk <- bk_cusum(data = tdat, theta = log(2), coxphmod = tcoxmod, cbaseh = tcbaseh, pb = TRUE)
bk$h <- 6.23
bercus <- bernoulli_cusum(data = subset(surgerydat, unit == 1), glmmod = glmmodber,
followup = followup, theta = log(2))
bercus$h <- 3.36
bk2 <- bk_cusum(data = tdat2, theta = log(2), coxphmod = tcoxmod, cbaseh = tcbaseh, pb = TRUE)
bk2$h <- 6.23
#Create the plot
interactive_plot(list(cgr, bk, bercus, bk2), unit_names =
c("hosp1", "hosp1", "hosp1", "hosp2"))