mcmc_temporal {stpphawkes} | R Documentation |
Bayesian Estimation of Temporal Hawkes Model Parameters
Description
This function computes the posterior of the parameters of a temporal exponential decay Hawkes model using Metropolis-with-in-Gibbs sampling.
Usage
mcmc_temporal(
times,
t_max = max(times),
t_mis = NULL,
param_init = NULL,
mcmc_param = NULL,
branching = TRUE,
print = TRUE
)
Arguments
times |
- vector of arrival times |
t_max |
- maximum time value (default = max(times)) |
t_mis |
- mx2 matrix, mth row contains two elements describing the mth missing time range (default = NULL) |
param_init |
- list of parameters of initial guess (default = NULL, will start with MLE) |
mcmc_param |
- list of mcmc parameters |
branching |
- using branching structure in estimation (default = TRUE) |
print |
- print progress (default = TRUE) |
Details
The default is to estimate the branching structure which is much more computationally efficient. The model will also account to missing data if t_mis
is provided.
Branching models specify gamma priors for mu, alpha and beta parameters.
Value
A DataFrame containing the mcmc samples
Examples
times = simulate_temporal(.5,.1,.5,c(0,10),numeric())
out = mcmc_temporal(times)