volume {stokes} | R Documentation |
The volume element
Description
The volume element in n
dimensions
Usage
volume(n)
is.volume(K,n=dovs(K))
Arguments
n |
Dimension of the space |
K |
Object of class |
Details
Spivak phrases it well (theorem 4.6, page 82):
If V
has dimension n
, it follows that
\Lambda^n(V)
has dimension 1. Thus all alternating
n
-tensors on V
are multiples of any non-zero one.
Since the determinant is an example of such a member of
\Lambda^n(V)
it is not surprising to find it in the following
theorem:
Let v_1,\ldots,v_n
be a basis for V
and
let \omega\in\Lambda^n(V)
. If w_i=\sum_{j=1}^n
a_{ij}v_j
then
\omega\left(w_1,\ldots,w_n\right)=\det\left(a_{ij}\right)\cdot\omega\left(v_1,\ldots
v_n\right)
(see the examples for numerical verification of this).
Neither the zero k
-form, nor scalars, are considered to be a
volume element.
Value
Function volume()
returns an object of class kform
;
function is.volume()
returns a Boolean.
Author(s)
Robin K. S. Hankin
References
M. Spivak 1971. Calculus on manifolds, Addison-Wesley
See Also
Examples
dx^dy^dz == volume(3)
p <- 1
for(i in 1:7){p <- p ^ as.kform(i)}
p
p == volume(7) # should be TRUE
o <- volume(5)
M <- matrix(runif(25),5,5)
det(M) - as.function(o)(M) # should be zero
is.volume(d(1) ^ d(2) ^ d(3) ^ d(4))
is.volume(d(1:9))