as.1form {stokes} | R Documentation |
Coerce vectors to 1-forms
Description
Given a vector, return the corresponding 1-form; the exterior
derivative of a 0-form (that is, a scalar function). Function
grad()
is a synonym.
Usage
as.1form(v)
grad(v)
Arguments
v |
A vector with element |
Details
The exterior derivative of a k
-form \phi
is a
(k+1)
-form \mathrm{d}\phi
given by
\mathrm{d}\phi
\left(
P_\mathbf{x}\left(\mathbf{v}_i,\ldots,\mathbf{v}_{k+1}\right)
\right)
=
\lim_{h\longrightarrow 0}\frac{1}{h^{k+1}}\int_{\partial
P_\mathbf{x}\left(h\mathbf{v}_1,\ldots,h\mathbf{v}_{k+1}\right)}\phi
We can use the facts that
\mathrm{d}\left(f\,\mathrm{d}x_{i_1}\wedge\cdots\wedge\mathrm{d}x_{i_k}\right)=
\mathrm{d}f\wedge\mathrm{d}x_{i_1}\wedge\cdots\wedge\mathrm{d}x_{i_k}
and
\mathrm{d}f=\sum_{j=1}^n\left(D_j f\right)\,\mathrm{d}x_j
to calculate differentials of general k
-forms. Specifically, if
\phi=\sum_{1\leq i_i < \cdots < i_k\leq n} a_{i_1\ldots
i_k}\mathrm{d}x_{i_1}\wedge\cdots\wedge\mathrm{d}x_{i_k}
then
\mathrm{d}\phi=
\sum_{1\leq i_i < \cdots < i_k\leq n}
[\sum_{j=1}^nD_ja_{i_1\ldots
i_k}\mathrm{d}x_j]\wedge\mathrm{d}x_{i_1}\wedge
\cdots\wedge\mathrm{d}x_{i_k.}
The entry in square brackets is given by grad()
. See the
examples for appropriate R idiom.
Value
A one-form
Author(s)
Robin K. S. Hankin
See Also
Examples
as.1form(1:9) # note ordering of terms
as.1form(rnorm(20))
grad(c(4,7)) ^ grad(1:4)