savefit {stepmixr} | R Documentation |
Save the fit of a mixture using the stepmix python package.
Description
This function saves the stepmix fitted object in python using the pickle package.
Usage
savefit(fitx, f)
loadfit(f)
Arguments
fitx |
An object created with the stepmix function. |
f |
String indicating the name of the file |
Details
This methods allows to save/load the stepmix object in a binary file using the pickle package.
Value
A pointer to a python object of type StepMix.
Author(s)
Éric Lacourse, Roxane de la Sablonnière, Charles-Édouard Giguère, Sacha Morin, Robin Legault, Félix Laliberté, Zsusza Bakk
References
Bolck, A., Croon, M., and Hagenaars, J. Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political analysis, 12(1): 3-27, 2004.
Vermunt, J. K. Latent class modeling with covariates: Two improved three-step approaches. Political analysis, 18 (4):450-469, 2010.
Bakk, Z., Tekle, F. B., and Vermunt, J. K. Estimating the association between latent class membership and external variables using bias-adjusted three-step approaches. Sociological Methodology, 43(1):272-311, 2013.
Bakk, Z. and Kuha, J. Two-step estimation of models between latent classes and external variables. Psychometrika, 83(4):871-892, 2018
Examples
## Not run:
if (reticulate::py_module_available("stepmix")) {
model1 <- stepmix(n_components = 2, n_steps = 3, progress_bar = 0)
X <- data.frame(x1 = c(0,1,1,1,1,0,0,0,0,0,1,1,0),
x2 = c(0,1,1,0,0,1,1,0,0,0,1,0,1))
fit1 <- fit(model1, X)
savefit(fit1, "fit1.pickle")
### clean the directory.
file.remove("fit1.pickle")
}
## End(Not run)