predict.stepmix.stepmix.StepMix {stepmixr} | R Documentation |
Predict the membership (probabilities) using the fit of the stepmix python package.
Description
Predict the membership (probabilities) of a mixture using a stepmix object in python using X and optionally Y to the object.
Usage
## S3 method for class 'stepmix.stepmix.StepMix'
predict(object, X = NULL, Y = NULL, ...)
## S3 method for class 'stepmix.stepmix.StepMix'
predict_proba(object, X = NULL, Y = NULL, ...)
Arguments
object |
An object created with the fit function. |
X |
The X matrix or data.frame for the measurement part of the model |
Y |
The Y matrix or data.frame for the structural part of the model |
... |
not used in this function |
Value
A vector containing the membership (probabilities) of the mixture.
Author(s)
Éric Lacourse, Roxane de la Sablonnière, Charles-Édouard Giguère, Sacha Morin, Robin Legault, Zsusza Bakk
References
Bolck, A., Croon, M., and Hagenaars, J. Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political analysis, 12(1): 3-27, 2004.
Vermunt, J. K. Latent class modeling with covariates: Two improved three-step approaches. Political analysis, 18 (4):450-469, 2010.
Bakk, Z., Tekle, F. B., and Vermunt, J. K. Estimating the association between latent class membership and external variables using bias-adjusted three-step approaches. Sociological Methodology, 43(1):272-311, 2013.
Bakk, Z. and Kuha, J. Two-step estimation of models between latent classes and external variables. Psychometrika, 83(4):871-892, 2018
Examples
## Not run:
if (reticulate::py_module_available("stepmix")) {
require(stepmixr)
model1 <- stepmix(n_components = 3, n_steps = 2, measurement = "continuous", progress_bar = 0)
X <- iris[c(1:10, 51:60, 101:110), 1:4]
fit1 <- fit(model1, X)
pr1 <- predict(fit1, X)
}
## End(Not run)