bootstrap {stepmixr} | R Documentation |
Non-parametric bootstrap of StepMix estimator.
Description
Non-parametric boostrap of StepMix estimator. Fit the estimator on X,Y then fit n_repetitions on resampled datasets. Repetition parameters are aligned with the class order of the main estimator.
Usage
## S3 method for class 'stepmix.stepmix.StepMix'
bootstrap(x, X = NULL, y = NULL, n_repetitions = 10, ...)
bootstrap(x, ...)
Arguments
x |
An object created with the fit function |
X |
The X matrix or data.frame for the measurement part of the model |
y |
The Y matrix or data.frame for the structural part of the model |
n_repetitions |
The number of bootsrap sample |
... |
For future options. This option is actually unused. |
Details
This methods returns a list with bootstrap samples (samples
)
and the log-likelihood (rep_stats
).
Value
A list containing bootstrap samples of the parameters.
Author(s)
Éric Lacourse, Roxane de la Sablonnière, Charles-Édouard Giguère, Sacha Morin, Robin Legault, Félix Laliberté, Zsusza Bakk
References
Bolck, A., Croon, M., and Hagenaars, J. Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political analysis, 12(1): 3-27, 2004.
Vermunt, J. K. Latent class modeling with covariates: Two improved three-step approaches. Political analysis, 18 (4):450-469, 2010.
Bakk, Z., Tekle, F. B., and Vermunt, J. K. Estimating the association between latent class membership and external variables using bias-adjusted three-step approaches. Sociological Methodology, 43(1):272-311, 2013.
Bakk, Z. and Kuha, J. Two-step estimation of models between latent classes and external variables. Psychometrika, 83(4):871-892, 2018
Examples
## Not run:
if (reticulate::py_module_available("stepmix")) {
require(stepmixr)
model1 <- stepmix(n_components = 3, n_steps = 2, measurement = "continuous", progress_bar = 0)
X <- iris[c(1:10, 51:60, 101:110), 1:4]
fit1 <- fit(model1, X)
fit1_bs <- bootstrap(fit1, X, n_repetitions = 5, progress_bar = FALSE)
}
## End(Not run)