art {statisfactory} | R Documentation |
Aligned rank transform of non-parametric data for further analysis using ANOVA
Description
This function performs the aligned rank transforms on non-parametric data which is useful for further analysis using parametric techniques like ANOVA.
Usage
art(
x,
response = names(x)[1],
factors = names(x)[2:ncol(x)],
subject = NULL,
fun = function(x) mean(x, na.rm = TRUE),
verbose = FALSE
)
Arguments
x |
Data frame. |
response |
Character. Names of column of |
factors |
Character list. Names of columns of |
subject |
|
fun |
Function. Function used to calculate cell centering statistic (the default is to use: |
verbose |
Logical. If TRUE then display progress. |
Details
The function successfully re-creates rankings given by ARTool (Wobbrock et al. 2011) of data in Higgins et al. (1990) for data with 2 and 3 factors.
If response
is ranks and the set of ranks in each cell is the same (e.g., each cell has ranks 1, 2, and 3, but not necessarily in that order), then all values will be equal across the different ART variables. This occurs because the center of each cell (e.g., the mean) is the same as the grand mean, so the aligned values are simply the residuals. An ANOVA on this data yields no variance across cells, so the F tests are invalid.
Value
Data frame.
References
Higgins, J.J., Blair, R.C., and Tashtoush, S. 1990. The aligned rank transform procedure. Proceedings of the Conference on Applied Statistics in Agriculture. Manhattan, Kansas: Kansas State University, pp. 185-195. doi:10.4148/2475-7772.1443
Peterson, K. 2002. Six modifications of the aligned rank transform test for interaction. Journal of Modern Applied Statistical Methods 1:100-109. doi:10.22237/jmasm/1020255240
Wobbrock, J.O., Findlater, L., Gergle, D., and Higgins, J.J. 2011. The aligned rank transform for nonparametric factorial analysis using only ANOVA procedures. Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI 2011). Vancouver, British Columbia (May 7-12, 2011). New York: ACM Press, pp. 143-146. doi:10.1145/1978942.1978963.
Examples
x <- data.frame(
subject=c('a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c'),
factor1=c('up', 'up', 'up', 'up', 'up', 'up', 'down', 'down', 'down', 'down',
'down', 'down'),
factor2=c('high', 'med', 'low', 'high', 'med', 'low', 'high', 'med', 'low', 'high',
'med', 'low'),
response=c(1, 17, 1, 1, 0, 4, 5, 6, 3, 7, 100, 70)
)
art(x=x, response='response', factors=c('factor1', 'factor2'))