estimateSplineParameters {statgenHTP} | R Documentation |
Extract estimates from fitted splines.
Description
Function for extracting parameter estimates from fitted splines on a specified interval.
Usage
estimateSplineParameters(
x,
estimate = c("predictions", "derivatives", "derivatives2"),
what = c("min", "max", "mean", "AUC", "p"),
AUCScale = c("min", "hour", "day"),
timeMin = NULL,
timeMax = NULL,
genotypes = NULL,
plotIds = NULL,
fitLevel = c("geno", "plot", "genoDev", "plotDev")
)
Arguments
x |
An object of class HTPSpline, the output of the
|
estimate |
The P-Spline component for which the estimate should be extracted, the predictions, the first derivatives or the second derivatives ("derivatives2") |
what |
The types of estimate that should be extracted. Either minimum ("min"), maximum ("max"), mean, area under the curve ("AUC") or a percentile. Percentiles should be given as p + percentile. E.g. for the 10th percentile specify what = "p10". Multiple types of estimate can be extracted at once. |
AUCScale |
The area under the curve is dependent on the scale used on the x-axis. By default the area is computed assuming a scale in minutes. This can be changed to either hours or days. |
timeMin |
The lower bound of the time interval from which the
estimates should be extracted. If |
timeMax |
The upper bound of the time interval from which the
estimates should be extracted. If |
genotypes |
A character vector indicating the genotypes for which
estimates should be extracted. If |
plotIds |
A character vector indicating the plotIds for which
estimates should be extracted. If |
fitLevel |
A character string indicating at which level of the data
the parameter estimates should be made. Only used for splines fitted using
|
Value
An object of class splineEst, a data.frame containing the estimated parameters.
See Also
Other functions for spline parameter estimation:
plot.splineEst()
Examples
### Estimate parameters for fitted P-splines.
## Run the function to fit P-splines on a subset of genotypes.
subGeno <- c("G160", "G151")
fit.spline <- fitSpline(inDat = spatCorrectedVator,
trait = "EffpsII_corr",
genotypes = subGeno,
knots = 50)
## Estimate the maximum value of the predictions at the beginning of the time course.
paramVator <- estimateSplineParameters(x = fit.spline,
estimate = "predictions",
what = "max",
timeMin = 1527784620,
timeMax = 1528500000,
genotypes = subGeno)
head(paramVator)
## Create a boxplot of the estimates.
plot(paramVator, plotType = "box")
## Estimate the minimum and maximum value of the predictions.
paramVator2 <- estimateSplineParameters(x = fit.spline,
estimate = "predictions",
what = c("min", "max"),
genotypes = subGeno)
head(paramVator2)
### Estimate parameters for fitted HDM-splines.
## The data from the Phenovator platform have been corrected for spatial
## trends and outliers for single observations have been removed.
## We need to specify the genotype-by-treatment interaction.
## Treatment: water regime (WW, WD).
spatCorrectedArch[["treat"]] <- substr(spatCorrectedArch[["geno.decomp"]],
start = 1, stop = 2)
spatCorrectedArch[["genoTreat"]] <-
interaction(spatCorrectedArch[["genotype"]],
spatCorrectedArch[["treat"]], sep = "_")
## Fit P-Splines Hierarchical Curve Data Model for selection of genotypes.
fit.psHDM <- fitSplineHDM(inDat = spatCorrectedArch,
trait = "LeafArea_corr",
genotypes = c("GenoA14_WD", "GenoA51_WD",
"GenoB11_WW", "GenoB02_WD",
"GenoB02_WW"),
time = "timeNumber",
pop = "geno.decomp",
genotype = "genoTreat",
plotId = "plotId",
difVar = list(geno = FALSE, plot = FALSE),
smoothPop = list(nseg = 4, bdeg = 3, pord = 2),
smoothGeno = list(nseg = 4, bdeg = 3, pord = 2),
smoothPlot = list(nseg = 4, bdeg = 3, pord = 2),
weights = "wt",
trace = FALSE)
## Estimate minimum, maximum, and mean for predictions at the genotype level.
paramArch <- estimateSplineParameters(x = fit.psHDM,
what = c("min", "max", "mean"),
fitLevel = "geno",
estimate = "predictions",
timeMax = 28)
head(paramArch)
## Create a boxplot of the estimates.
plot(paramArch, plotType = "box")
## Estimate area under the curve for predictions at the plot level.
paramArch2 <- estimateSplineParameters(x = fit.psHDM,
what = "AUC",
fitLevel = "plot",
estimate = "predictions")
head(paramArch2)