longDat {statVisual} | R Documentation |
A Simulated Dataset for Longitudinal Data Analysis
Description
A simulated dataset for longitudinal data analysis.
Usage
data("longDat")
Format
A data frame with 540 observations on the following 4 variables.
sid
subject id
time
time points. A factor with levels
time1
time2
time3
time4
time5
time6
y
numeric. outcome variable
grp
subject group. A factor with levels
grp1
grp2
grp3
Details
The dataset is generated from the following mixed effects model for repeated measures:
y_{ij}=\beta_{0i}+\beta_1 t_{j} + \beta_2 grp_{2i} +
\beta_3 grp_{3i} + \beta_4 \times\left(t_{j}\times grp_{2i}\right)
+ \beta_5 \times\left(t_{j}\times grp_{3i}\right)
+\epsilon_{ij},
where y_{ij}
is the outcome value for the i
-th subject
measured at j
-th time point t_{j}
,
grp_{2i}
is a dummy variable indicating if the i
-th subject
is from group 2,
grp_{3i}
is a dummy variable indicating if the i
-th subject
is from group 3,
\beta_{0i}\sim N\left(\beta_0, \sigma_b^2\right)
,
\epsilon_{ij}\sim N\left(0, \sigma_e^2\right)
, i=1,\ldots, n, j=1, \ldots, m
,
n
is the number of subjects, and m
is the number of time points.
When t_j=0
, the expected outcome value is
E\left(y_{ij}\right)=\beta_0+\beta_2 dose_{2i} + \beta_3 dose_{3i}.
Hence, we have at baseline
E\left(y_{ij}\right)=\beta_0,\; \mbox{for dose 1 group}.
E\left(y_{ij}\right)=\beta_0 + \beta_2,\; \mbox{for dose 2 group}.
E\left(y_{ij}\right)=\beta_0 + \beta_3,\; \mbox{for dose 3 group}.
For dose 1 group, the expected outcome values across time is
E\left(y_{ij}\right)=\beta_0+\beta_1 t_{j}.
We also can get the expected difference of outcome values between dose 2 group and dose 1 group, between dose 3 group and dose 1 group, and between dose 3 group and dose 2 group:
E\left(y_{ij} - y_{i'j}\right) =\beta_2+\beta_4 t_{j},\;\mbox{for subject $i$ in dose 2 group and subject $i'$ in dose 1 group},
E\left(y_{kj} - y_{i'j}\right) =\beta_3+\beta_5 t_{j},\;\mbox{for subject $k$ in dose 3 group and subject $i'$ in dose 1 group},
E\left(y_{kj} - y_{ij}\right) =\left(\beta_3-\beta_2\right)+\left(\beta_5-\beta_4\right) t_{j},\;\mbox{for subject $i$ in dose 3 group and subject $i$ in dose 2 group}.
We set n=90
, m=6
,
\beta_0=5
,
\beta_1=0
,
\beta_2=0
,
\beta_3=0
,
\beta_4=2
,
\beta_5=-2
,
\sigma_e=1
,
\sigma_b=0.5
,
and
t_{ij}=j, j=1, \ldots, m
.
That is, the trajectories for dose 1 group are horizontal with mean intercept at 5
, the trajectories for dose 2 group are linearly increasing with slope 2
and mean intercept 5
, and the trajectories for dose 3 group are linearly decreasing with slope -2
and mean intercept 5
.
Examples
data(longDat)
print(dim(longDat))
print(longDat[1:3,])
print(table(longDat$time, useNA = "ifany"))
print(table(longDat$grp, useNA = "ifany"))
print(table(longDat$sid, useNA = "ifany"))
print(table(longDat$time, longDat$grp))