cv_glmnet_plot {statVisual} | R Documentation |
Plot the Cross-Validation Curve Produced by cv.glmnet
Description
Plots the cross-validation curve, and upper and lower standard error curves, as a function of the values of the tuning parameter lambda.
Usage
cv_glmnet_plot(x,
y,
family = "binomial",
addThemeFlag = TRUE,
...)
Arguments
x |
a matrix with rows are subjects and columns are numeric variables (predictors). No missing values are allowed. |
y |
a vector of response. The number of elements of |
family |
character. Indicating response type. see the description in |
addThemeFlag |
logical. Indicates if light blue background and white grid should be added to the figure. |
... |
other input parameters for |
Value
A list with 9 elements.
data
, layers
, scales
, mapping
,
theme
, coordinates
,
facet
plot_env
, and labels
.
Author(s)
Wenfei Zhang <Wenfei.Zhang@sanofi.com>, Weiliang Qiu <Weiliang.Qiu@sanofi.com>, Xuan Lin <Xuan.Lin@sanofi.com>, Donghui Zhang <Donghui.Zhang@sanofi.com>
Examples
library(dplyr)
library(tibble)
library(glmnet)
data(esSim)
print(esSim)
# expression data
dat = exprs(esSim)
print(dim(dat))
print(dat[1:2,])
# phenotype data
pDat = pData(esSim)
print(dim(pDat))
print(pDat[1:2,])
# feature data
fDat = fData(esSim)
print(dim(fDat))
print(fDat[1:2,])
# choose the first 6 probes (3 OE probes, 2 UE probes, and 1 NE probe)
pDat$probe1 = dat[1,]
pDat$probe2 = dat[2,]
pDat$probe3 = dat[3,]
pDat$probe4 = dat[4,]
pDat$probe5 = dat[5,]
pDat$probe6 = dat[6,]
print(pDat[1:2, ])
# check histograms of probe 1 expression in cases and controls
print(table(pDat$grp, useNA = "ifany"))
statVisual(type = "cv_glmnet_plot",
x = as.matrix(pDat[, c(3:8)]),
y = pDat$grp,
family = "binomial")
cv_glmnet_plot(x = as.matrix(pDat[, c(3:8)]),
y = pDat$grp,
family = "binomial")