PCA_score {statVisual} | R Documentation |
Scatter Plot of 2 Specified Principal Components
Description
Scatter plot of 2 specified principal components. The size of the data points on the PCA plot indicates the Mahalanobis distance (distance between each point and mean value).
Usage
PCA_score(
prcomp_obj,
data,
dims = c(1, 2),
color = NULL,
MD = TRUE,
loadings = FALSE,
loadings.color = "black",
loadings.label = FALSE,
title = "pca plot",
addThemeFlag = TRUE)
Arguments
prcomp_obj |
the object returned by the function |
data |
A data frame. Rows are subjects; Columns are variables describing the subjects. The object |
dims |
a numeric vector with 2 elements indicating which two principal components will be used to draw scatter plot. |
color |
character. The column name of |
MD |
logical. Indicate if the Mahalanobis distance (distance between each point and mean value) would be used to indicate the size of data points on the PCA plot |
loadings |
logical. Indicate if loading plot would be superimposed on the PCA plot. (default: FALSE) |
loadings.color |
character. Indicate the color of the loading axis. |
loadings.label |
logical. Indicating if loading labels should be added to the plot. (default: FALSE) |
title |
character. Figure title. |
addThemeFlag |
logical. Indicates if light blue background and white grid should be added to the figure. |
Value
A list with 9 elements.
data
, layers
, scales
, mapping
,
theme
, coordinates
,
facet
, plot_env
, and labels
.
Author(s)
Wenfei Zhang <Wenfei.Zhang@sanofi.com>, Weiliang Qiu <Weiliang.Qiu@sanofi.com>, Xuan Lin <Xuan.Lin@sanofi.com>, Donghui Zhang <Donghui.Zhang@sanofi.com>
Examples
library(factoextra)
data(esSim)
print(esSim)
# expression data
dat = exprs(esSim)
print(dim(dat))
print(dat[1:2,])
# phenotype data
pDat = pData(esSim)
print(dim(pDat))
print(pDat[1:2,])
# feature data
fDat = fData(esSim)
print(dim(fDat))
print(fDat[1:2,])
# choose the first 6 probes (3 OE probes, 2 UE probes, and 1 NE probe)
pDat$probe1 = dat[1,]
pDat$probe2 = dat[2,]
pDat$probe3 = dat[3,]
pDat$probe4 = dat[4,]
pDat$probe5 = dat[5,]
pDat$probe6 = dat[6,]
print(pDat[1:2, ])
# check histograms of probe 1 expression in cases and controls
print(table(pDat$grp, useNA = "ifany"))
pDat$grp = factor(pDat$grp)
###
pca.obj = iprcomp(pDat[, c(3:8)], scale. = TRUE)
# scree plot
factoextra::fviz_eig(pca.obj, addlabels = TRUE)
# scatter plot of PC1 vs PC2
statVisual(type = 'PCA_score',
prcomp_obj = pca.obj,
dims = c(1, 2),
data = pDat,
color = 'grp',
loadings = FALSE)
PCA_score(prcomp_obj = pca.obj,
dims = c(1, 3),
data = pDat,
color = 'grp',
loadings = FALSE)