ImpPlot {statVisual} | R Documentation |
Plot of Variable Importance
Description
Plot of variable importance based on results from randomForest
or gbm
.
Usage
ImpPlot(model,
theme_classic = TRUE,
n.trees = NULL,
addThemeFlag = TRUE,
...)
Arguments
model |
An object returned by |
theme_classic |
logical. Use classic background without grids (default: TRUE). |
n.trees |
integer. The number of trees used to generate the plot
used in the function |
addThemeFlag |
logical. Indicates if light blue background and white grid should be added to the figure. |
... |
other input parameters for facet & theme |
Value
A list with 9 elements.
data
, layers
, scales
, mapping
,
theme
, coordinates
,
facet
plot_env
, and labels
.
Author(s)
Wenfei Zhang <Wenfei.Zhang@sanofi.com>, Weiliang Qiu <Weiliang.Qiu@sanofi.com>, Xuan Lin <Xuan.Lin@sanofi.com>, Donghui Zhang <Donghui.Zhang@sanofi.com>
Examples
library(dplyr)
library(randomForest)
library(tibble)
data(esSim)
print(esSim)
# expression data
dat = exprs(esSim)
print(dim(dat))
print(dat[1:2,])
# phenotype data
pDat = pData(esSim)
print(dim(pDat))
print(pDat[1:2,])
# feature data
fDat = fData(esSim)
print(dim(fDat))
print(fDat[1:2,])
# choose the first 6 probes (3 OE probes, 2 UE probes, and 1 NE probe)
pDat$probe1 = dat[1,]
pDat$probe2 = dat[2,]
pDat$probe3 = dat[3,]
pDat$probe4 = dat[4,]
pDat$probe5 = dat[5,]
pDat$probe6 = dat[6,]
print(pDat[1:2, ])
# check histograms of probe 1 expression in cases and controls
print(table(pDat$grp, useNA = "ifany"))
pDat$grp = factor(pDat$grp)
rf_m = randomForest(
x = pDat[, c(3:8)],
y = pDat$grp,
importance = TRUE, proximity = TRUE
)
statVisual(type = 'ImpPlot', model = rf_m)
ImpPlot(model = rf_m)
[Package statVisual version 1.2.1 Index]