heckit5rob {ssmrob} | R Documentation |
Robust Heckit Fit: Switching Regressions
Description
Fits the switching regression model with probit selection using a robust two-stage estimator
Usage
heckit5rob(selection, outcome1, outcome2, data, control = heckitrob.control())
Arguments
selection |
formula, the selection equation |
outcome1 |
formula, first outcome equation |
outcome2 |
formula, second outcome equation |
data |
an optional data frame containing the variables in the model. If not found in data, the variables are taken from |
control |
a list of parameters for controlling the fitting process |
Details
Compute robust two-stage extimates of the switching regression model with probit selection. The robust probit is fitted in the first stage. In the second stage the Mallows type M-estimators are used.
The values of the tuning constants and the robustness weights can be modified in heckitrob.control
.
Value
Object of class "heckit5rob".
coefficients |
a named vector of coefficients |
stage1 |
object of class |
stage21 |
object of class |
stage22 |
object of class |
vcov1 |
variance matrix of the second stage first regime |
vcov2 |
variance matrix of the second stage second regime |
sigma1 |
the standard error of the error term of the outcome equation when y_1=1 |
sigma2 |
the standard error of the error term of the outcome equation when y_1=0 |
IMR1 |
inverse Mills ratio for the case when y_1=1 |
IMR2 |
inverse Mills ratio for the case when y_1=0 |
call |
the matched call |
method |
method of estimation, currently only "robust two-stage" is implemented |
converged |
logical. Did all the estimators converge? |
iterations |
list containing the numbers of iterations |
Author(s)
Mikhail Zhelonkin, Marc G. Genton, Elvezio Ronchetti
References
Heckman, J.J. (1979) Sample Selection Bias as a Specification Error. Econometrica, 47, p. 153-161.
Zhelonkin, M., Genton M.G., and Ronchetti, E. (2016) Robust Inference in Sample Selection Models. Journal of the Royal Statistical Society, Series B, 78, p. 805-827. doi: 10.1111/rssb.12136
Zhelonkin, M., Ronchetti, E. (2021) Robust Analysis of Sample Selection Models through the R Package ssmrob. Journal of Statistical Software, 99, 4, p. 1-35. doi: 10.18637/jss.v099.i04
See Also
glmrob
, rlm
, ssmrob
, heckitrob
, heckitrob.control
Examples
## Not run:
library(mvtnorm)
set.seed(2)
N <- 5000
beta1 <- c(0, 1.0, 1.0, 0.75)
beta21 <- c(0, 1.5, 1.0, 0.5)
beta22 <- c(1, -1.5, 1.0, 0.5)
covm <- diag(3)
covm[lower.tri(covm)] <- c(0.75, 0.5, 0.25)
covm[upper.tri(covm)] <- covm[lower.tri(covm)]
eps <- rmvnorm(N, rep(0, 3), covm)
x1 <- rmvnorm(N, mean=c(0, -1, 1), sigma=diag(c(1, 0.5, 1)))
x21 <- x1
x22 <- x1
x21[, 3] <- rnorm(N, 1, 1)
x22[, 3] <- rnorm(N, 1, 1)
x1beta1 <- beta1[1] + x1[, 1]*beta1[2] + x1[, 2]*beta1[3] + x1[, 3]*beta1[4]
x21beta21 <- beta21[1] + x21[, 1]*beta21[2] + x21[, 2]*beta21[3] + x21[, 3]*beta21[4]
x22beta22 <- beta22[1] + x22[, 1]*beta22[2] + x22[, 2]*beta22[3] + x22[, 3]*beta22[4]
y1 <- ifelse(x1beta1 + eps[, 1] > 0, 1, 0)
y2 <- ifelse(y1 > 0.5, x21beta21 + eps[, 2],
x22beta22 + eps[, 3])
srsim.fit <- ssmrob(y1 ~ x1, list(y2 ~ x21, y2 ~ x22),
control = heckitrob.control(weights.x1 = "hat", weights.x2 = "covMcd"))
summary(srsim.fit)
## End(Not run)