| sprbinom {spmodel} | R Documentation | 
Simulate a spatial binomial random variable
Description
Simulate a spatial binomial random variable with a specific mean and covariance structure.
Usage
sprbinom(
  spcov_params,
  mean = 0,
  size = 1,
  samples = 1,
  data,
  randcov_params,
  partition_factor,
  ...
)
Arguments
spcov_params | 
 An   | 
mean | 
 A numeric vector representing the mean.   | 
size | 
 A numeric vector representing the sample size for each binomial trial.
The default is   | 
samples | 
 The number of independent samples to generate. The default
is   | 
data | 
 A data frame or   | 
randcov_params | 
 A   | 
partition_factor | 
 A formula indicating the partition factor.  | 
... | 
 Additional arguments passed to   | 
Details
The values of spcov_params, mean, and randcov_params
are assumed to be on the link scale. They are used to simulate a latent normal (Gaussian)
response variable using sprnorm(). This latent variable is the
conditional mean used with dispersion to simulate a binomial random variable.
Value
If samples is 1, a vector of random variables for each row of data
is returned. If samples is greater than one, a matrix of random variables
is returned, where the rows correspond to each row of data and the columns
correspond to independent samples.
Examples
spcov_params_val <- spcov_params("exponential", de = 0.2, ie = 0.1, range = 1)
sprbinom(spcov_params_val, data = caribou, xcoord = x, ycoord = y)
sprbinom(spcov_params_val, samples = 5, data = caribou, xcoord = x, ycoord = y)