PGA {spherepc} | R Documentation |
Principal geodesic analysis
Description
This function performs principal geodesic analysis.
Usage
PGA(data, col1 = "blue", col2 = "red")
Arguments
data |
matrix or data frame consisting of spatial locations with two columns. Each row represents longitude and latitude (denoted by degrees. |
col1 |
color of data. The default is blue. |
col2 |
color of the principal geodesic line. The default is red |
Details
This function performs principal geodesic analysis.
Value
plot and a list consisting of
line |
spatial locations (longitude and latitude by degrees) of points in the principal geodesic line. |
Note
This function requires to load 'sphereplot', 'geosphere' and 'rgl' R package.
Author(s)
Jongmin Lee
References
Fletcher, P. T., Lu, C., Pizer, S. M. and Joshi, S. (2004). Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions on Medical Imaging, 23, 995-1005.
See Also
LPG
.
Examples
library(rgl)
library(sphereplot)
library(geosphere)
#### example 1: noisy half-great circle data
circle <- GenerateCircle(c(150, 60), radius = pi/2)
half.circle <- circle[circle[, 1] < 0, , drop = FALSE]
sigma <- 2
half.circle <- half.circle + sigma * rnorm(nrow(half.circle))
PGA(half.circle)
#### example 2: noisy S-shaped data
#### The data consists of two parts: x ~ Uniform[0, 20], y = sqrt(20 * x - x^2) + N(0, sigma^2),
#### x ~ Uniform[-20, 0], y = -sqrt(-20 * x - x^2) + N(0, sigma^2).
n <- 500
x <- 60 * runif(n)
sigma <- 2
y <- (60 * x - x^2)^(1/2) + sigma * rnorm(n)
simul.S1 <- cbind(x, y)
z <- -60 * runif(n)
w <- -(-60 * z - z^2)^(1/2)+ sigma * rnorm(n)
simul.S2 <- cbind(z, w)
simul.S <- rbind(simul.S1, simul.S2)
PGA(simul.S)
[Package spherepc version 0.1.7 Index]