center_data |
Centers the observations in a matrix by their respective class sample means |
cov_autocorrelation |
Generates a p \times p autocorrelated covariance matrix |
cov_block_autocorrelation |
Generates a p \times p block-diagonal covariance matrix with autocorrelated blocks. |
cov_eigen |
Computes the eigenvalue decomposition of the maximum likelihood estimators (MLE) of the covariance matrices for the given data matrix |
cov_intraclass |
Generates a p \times p intraclass covariance matrix |
cov_list |
Computes the covariance-matrix maximum likelihood estimators for each class and returns a list. |
cov_mle |
Computes the maximum likelihood estimator for the sample covariance matrix under the assumption of multivariate normality. |
cov_pool |
Computes the pooled maximum likelihood estimator (MLE) for the common covariance matrix |
cov_shrink_diag |
Computes a shrunken version of the maximum likelihood estimator for the sample covariance matrix under the assumption of multivariate normality. |
cv_partition |
Randomly partitions data for cross-validation. |
diag_estimates |
Computes estimates and ancillary information for diagonal classifiers |
dmvnorm_diag |
Computes multivariate normal density with a diagonal covariance matrix |
generate_blockdiag |
Generates data from 'K' multivariate normal data populations, where each population (class) has a covariance matrix consisting of block-diagonal autocorrelation matrices. |
generate_intraclass |
Generates data from 'K' multivariate normal data populations, where each population (class) has an intraclass covariance matrix. |
h |
Bias correction function from Pang et al. (2009). |
lda_diag |
Diagonal Linear Discriminant Analysis (DLDA) |
lda_diag.default |
Diagonal Linear Discriminant Analysis (DLDA) |
lda_diag.formula |
Diagonal Linear Discriminant Analysis (DLDA) |
lda_eigen |
The Minimum Distance Rule using Moore-Penrose Inverse (MDMP) classifier |
lda_eigen.default |
The Minimum Distance Rule using Moore-Penrose Inverse (MDMP) classifier |
lda_eigen.formula |
The Minimum Distance Rule using Moore-Penrose Inverse (MDMP) classifier |
lda_emp_bayes |
The Minimum Distance Empirical Bayesian Estimator (MDEB) classifier |
lda_emp_bayes.default |
The Minimum Distance Empirical Bayesian Estimator (MDEB) classifier |
lda_emp_bayes.formula |
The Minimum Distance Empirical Bayesian Estimator (MDEB) classifier |
lda_emp_bayes_eigen |
The Minimum Distance Rule using Modified Empirical Bayes (MDMEB) classifier |
lda_emp_bayes_eigen.default |
The Minimum Distance Rule using Modified Empirical Bayes (MDMEB) classifier |
lda_emp_bayes_eigen.formula |
The Minimum Distance Rule using Modified Empirical Bayes (MDMEB) classifier |
lda_pseudo |
Linear Discriminant Analysis (LDA) with the Moore-Penrose Pseudo-Inverse |
lda_pseudo.default |
Linear Discriminant Analysis (LDA) with the Moore-Penrose Pseudo-Inverse |
lda_pseudo.formula |
Linear Discriminant Analysis (LDA) with the Moore-Penrose Pseudo-Inverse |
lda_schafer |
Linear Discriminant Analysis using the Schafer-Strimmer Covariance Matrix Estimator |
lda_schafer.default |
Linear Discriminant Analysis using the Schafer-Strimmer Covariance Matrix Estimator |
lda_schafer.formula |
Linear Discriminant Analysis using the Schafer-Strimmer Covariance Matrix Estimator |
lda_shrink_cov |
Shrinkage-based Diagonal Linear Discriminant Analysis (SDLDA) |
lda_shrink_cov.default |
Shrinkage-based Diagonal Linear Discriminant Analysis (SDLDA) |
lda_shrink_cov.formula |
Shrinkage-based Diagonal Linear Discriminant Analysis (SDLDA) |
lda_shrink_mean |
Shrinkage-mean-based Diagonal Linear Discriminant Analysis (SmDLDA) from Tong, Chen, and Zhao (2012) |
lda_shrink_mean.default |
Shrinkage-mean-based Diagonal Linear Discriminant Analysis (SmDLDA) from Tong, Chen, and Zhao (2012) |
lda_shrink_mean.formula |
Shrinkage-mean-based Diagonal Linear Discriminant Analysis (SmDLDA) from Tong, Chen, and Zhao (2012) |
lda_thomaz |
Linear Discriminant Analysis using the Thomaz-Kitani-Gillies Covariance Matrix Estimator |
lda_thomaz.default |
Linear Discriminant Analysis using the Thomaz-Kitani-Gillies Covariance Matrix Estimator |
lda_thomaz.formula |
Linear Discriminant Analysis using the Thomaz-Kitani-Gillies Covariance Matrix Estimator |
log_determinant |
Computes the log determinant of a matrix. |
no_intercept |
Removes the intercept term from a formula if it is included |
plot.rda_high_dim_cv |
Plots a heatmap of cross-validation error grid for a HDRDA classifier object. |
posterior_probs |
Computes posterior probabilities via Bayes Theorem under normality |
predict.lda_diag |
Diagonal Linear Discriminant Analysis (DLDA) |
predict.lda_eigen |
The Minimum Distance Rule using Moore-Penrose Inverse (MDMP) classifier |
predict.lda_emp_bayes |
The Minimum Distance Empirical Bayesian Estimator (MDEB) classifier |
predict.lda_emp_bayes_eigen |
The Minimum Distance Rule using Modified Empirical Bayes (MDMEB) classifier |
predict.lda_pseudo |
Linear Discriminant Analysis (LDA) with the Moore-Penrose Pseudo-Inverse |
predict.lda_schafer |
Linear Discriminant Analysis using the Schafer-Strimmer Covariance Matrix Estimator |
predict.lda_shrink_cov |
Shrinkage-based Diagonal Linear Discriminant Analysis (SDLDA) |
predict.lda_shrink_mean |
Shrinkage-mean-based Diagonal Linear Discriminant Analysis (SmDLDA) from Tong, Chen, and Zhao (2012) |
predict.lda_thomaz |
Linear Discriminant Analysis using the Thomaz-Kitani-Gillies Covariance Matrix Estimator |
predict.qda_diag |
Diagonal Quadratic Discriminant Analysis (DQDA) |
predict.qda_shrink_cov |
Shrinkage-based Diagonal Quadratic Discriminant Analysis (SDQDA) |
predict.qda_shrink_mean |
Shrinkage-mean-based Diagonal Quadratic Discriminant Analysis (SmDQDA) from Tong, Chen, and Zhao (2012) |
predict.rda_high_dim |
High-Dimensional Regularized Discriminant Analysis (HDRDA) |
qda_diag |
Diagonal Quadratic Discriminant Analysis (DQDA) |
qda_diag.default |
Diagonal Quadratic Discriminant Analysis (DQDA) |
qda_diag.formula |
Diagonal Quadratic Discriminant Analysis (DQDA) |
qda_shrink_cov |
Shrinkage-based Diagonal Quadratic Discriminant Analysis (SDQDA) |
qda_shrink_cov.default |
Shrinkage-based Diagonal Quadratic Discriminant Analysis (SDQDA) |
qda_shrink_cov.formula |
Shrinkage-based Diagonal Quadratic Discriminant Analysis (SDQDA) |
qda_shrink_mean |
Shrinkage-mean-based Diagonal Quadratic Discriminant Analysis (SmDQDA) from Tong, Chen, and Zhao (2012) |
qda_shrink_mean.default |
Shrinkage-mean-based Diagonal Quadratic Discriminant Analysis (SmDQDA) from Tong, Chen, and Zhao (2012) |
qda_shrink_mean.formula |
Shrinkage-mean-based Diagonal Quadratic Discriminant Analysis (SmDQDA) from Tong, Chen, and Zhao (2012) |
quadform |
Quadratic form of a matrix and a vector |
quadform_inv |
Quadratic Form of the inverse of a matrix and a vector |
rda_cov |
Calculates the RDA covariance-matrix estimators for each class |
rda_high_dim |
High-Dimensional Regularized Discriminant Analysis (HDRDA) |
rda_high_dim.default |
High-Dimensional Regularized Discriminant Analysis (HDRDA) |
rda_high_dim.formula |
High-Dimensional Regularized Discriminant Analysis (HDRDA) |
rda_high_dim_cv |
Helper function to optimize the HDRDA classifier via cross-validation |
rda_weights |
Computes the observation weights for each class for the HDRDA classifier |
regdiscrim_estimates |
Computes estimates and ancillary information for regularized discriminant classifiers |
risk_stein |
Stein Risk function from Pang et al. (2009). |
solve_chol |
Computes the inverse of a symmetric, positive-definite matrix using the Cholesky decomposition |
tong_mean_shrinkage |
Tong et al. (2012)'s Lindley-type Shrunken Mean Estimator |
two_class_sim_data |
Example bivariate classification data from caret |
update_rda_high_dim |
Helper function to update tuning parameters for the HDRDA classifier |
var_shrinkage |
Shrinkage-based estimator of variances for each feature from Pang et al. (2009). |