sparseSVM-package {sparseSVM} | R Documentation |
Solution Paths for Sparse High-Dimensional Support Vector Machine with Lasso or Elastic-Net Regularization
Description
Fast algorithm for fitting solution paths for sparse SVM regularized by lasso or elastic-net that generate sparse solutions.
Details
Package: | sparseSVM |
Type: | Package |
Version: | 1.1-6 |
Date: | 2018-06-01 |
License: | GPL-3 |
Accepts X,y
data for binary classification and
produces the solution path over a grid of values of the regularization parameter lambda
. Also provides functions for plotting, prediction and parallelized cross-validation.
Author(s)
Congrui Yi and Yaohui Zeng
Maintainer: Congrui Yi <eric.ycr@gmail.com>
References
Yi, C. and Huang, J. (2017)
Semismooth Newton Coordinate Descent Algorithm for
Elastic-Net Penalized Huber Loss Regression and Quantile Regression,
https://www.tandfonline.com/doi/abs/10.1080/10618600.2016.1256816?journalCode=ucgs20
Journal of Computational and Graphical Statistics
Examples
X = matrix(rnorm(1000*100), 1000, 100)
b = 3
w = 5*rnorm(10)
eps = rnorm(1000)
y = sign(b + drop(X[,1:10] %*% w + eps))
fit = sparseSVM(X, y)
coef(fit, 0.05)
predict(fit, X[1:5,], lambda = c(0.2, 0.1))
plot(fit)
cv.fit <- cv.sparseSVM(X, y, ncores = 2, seed = 1234)
predict(cv.fit, X)
coef(cv.fit)
plot(cv.fit)
[Package sparseSVM version 1.1-6 Index]