Variable Selection under Ranked Sparsity Principles for Interactions and Polynomials


[Up] [Top]

Documentation for package ‘sparseR’ version 0.3.1

Help Pages

sparseR-package sparseR: Implement ranked sparsity for selecting interactions and polynomials
cleveland Data sets
coef.sparseR Predict coefficients or responses for sparseR object
datasets Data sets
EBIC Custom IC functions for stepwise models
EBIC.default Custom IC functions for stepwise models
effect_plot Plot relevant effects of a sparseR object
effect_plot.sparseR Plot relevant effects of a sparseR object
effect_plot.sparseRBIC Plot relevant effects of a sparseR object
get_penalties Helper function to help set up penalties
hungarian Data sets
irlcs_radon_syn Data sets
plot.sparseR Plot relevant properties of sparseR objects
predict.sparseR Predict coefficients or responses for sparseR object
print.sparseR Print sparseR object
RAIC Custom IC functions for stepwise models
RAIC.default Custom IC functions for stepwise models
RBIC Custom IC functions for stepwise models
RBIC.default Custom IC functions for stepwise models
S Data sets
sparseR Fit a ranked-sparsity model with regularized regression
sparseRBIC_bootstrap Bootstrap procedure for stepwise regression
sparseRBIC_sampsplit Sample split procedure for stepwise regression
sparseRBIC_step Fit a ranked-sparsity model with forward stepwise RBIC (experimental)
sparseR_prep Preprocess & create a model matrix with interactions + polynomials
step_center_to Centering numeric data to a value besides their mean
summary.sparseR Summary of sparseR model coefficients
switzerland Data sets
tidy.step_center_to Centering numeric data to a value besides their mean
va Data sets
Z Data sets