sparseR-package | sparseR: Implement ranked sparsity for selecting interactions and polynomials |
cleveland | Data sets |
coef.sparseR | Predict coefficients or responses for sparseR object |
datasets | Data sets |
EBIC | Custom IC functions for stepwise models |
EBIC.default | Custom IC functions for stepwise models |
effect_plot | Plot relevant effects of a sparseR object |
effect_plot.sparseR | Plot relevant effects of a sparseR object |
effect_plot.sparseRBIC | Plot relevant effects of a sparseR object |
get_penalties | Helper function to help set up penalties |
hungarian | Data sets |
irlcs_radon_syn | Data sets |
plot.sparseR | Plot relevant properties of sparseR objects |
predict.sparseR | Predict coefficients or responses for sparseR object |
print.sparseR | Print sparseR object |
RAIC | Custom IC functions for stepwise models |
RAIC.default | Custom IC functions for stepwise models |
RBIC | Custom IC functions for stepwise models |
RBIC.default | Custom IC functions for stepwise models |
S | Data sets |
sparseR | Fit a ranked-sparsity model with regularized regression |
sparseRBIC_bootstrap | Bootstrap procedure for stepwise regression |
sparseRBIC_sampsplit | Sample split procedure for stepwise regression |
sparseRBIC_step | Fit a ranked-sparsity model with forward stepwise RBIC (experimental) |
sparseR_prep | Preprocess & create a model matrix with interactions + polynomials |
step_center_to | Centering numeric data to a value besides their mean |
summary.sparseR | Summary of sparseR model coefficients |
switzerland | Data sets |
tidy.step_center_to | Centering numeric data to a value besides their mean |
va | Data sets |
Z | Data sets |