rmvnorm {spam} | R Documentation |
Draw Multivariate Normals
Description
Fast ways to draw multivariate normals when the variance or precision matrix is sparse.
Usage
rmvnorm(n, mu=rep.int(0, dim(Sigma)[1]), Sigma, ..., mean, sigma)
rmvnorm.spam(n, mu=rep.int(0, dim(Sigma)[1]), Sigma, Rstruct=NULL, ..., mean, sigma)
rmvnorm.prec(n, mu=rep.int(0, dim(Q)[1]), Q, Rstruct=NULL, ...)
rmvnorm.canonical(n, b, Q, Rstruct=NULL, ...)
Arguments
n |
number of observations. |
mu |
mean vector. |
Sigma |
covariance matrix (of class |
Q |
precision matrix. |
b |
vector determining the mean. |
Rstruct |
the Cholesky structure of |
... |
arguments passed to |
mean , sigma |
similar to |
Details
All functions rely on a Cholesky factorization of the
covariance or precision matrix.
The functions rmvnorm.prec
and rmvnorm.canonical
do not require sparse precision matrices
Depending on the the covariance matrix Sigma
, rmvnorm
or rmvnorm.spam
is used. If wrongly specified, dispatching to
the other function is done.
Default mean is zero. Side note: mean is added via sweep()
and
no gain is accieved by distinguishing this case.
Often (e.g., in a Gibbs sampler setting), the sparsity structure of
the covariance/precision does not change. In such setting, the
Cholesky factor can be passed via Rstruct
in which only updates
are performed (i.e., update.spam.chol.NgPeyton
instead of a
full chol
).
Author(s)
Reinhard Furrer
References
See references in chol
.
See Also
Examples
# Generate multivariate from a covariance inverse:
# (usefull for GRMF)
set.seed(13)
n <- 25 # dimension
N <- 1000 # sample size
Sigmainv <- .25^abs(outer(1:n,1:n,"-"))
Sigmainv <- as.spam( Sigmainv, eps=1e-4)
Sigma <- solve( Sigmainv) # for verification
iidsample <- array(rnorm(N*n),c(n,N))
mvsample <- backsolve( chol(Sigmainv), iidsample)
norm( var(t(mvsample)) - Sigma, type="m")
# compare with:
mvsample <- backsolve( chol(as.matrix( Sigmainv)), iidsample, n)
#### ,n as patch
norm( var(t(mvsample)) - Sigma, type="m")
# 'solve' step by step:
b <- rnorm( n)
R <- chol(Sigmainv)
norm( backsolve( R, forwardsolve( R, b))-
solve( Sigmainv, b) )
norm( backsolve( R, forwardsolve( R, diag(n)))- Sigma )