hydraulicCutOff2 {soilphysics} | R Documentation |
The matric potential at the point of hydraulic cut-off using the point of maximum curvature of DE (Dexter et al. 2008) water retention curve.
Description
The pore water suction at the point of hydraulic cut-off occurs at the point where the residual water content, obtained from Dexter et al. (2008), intercepts with the Groenevelt & Grant (2004) retention curve. This function calculates the Hydraulic Cut-Off using the point of maximum curvature of the DE (Dexter et al. 2008) curve.
Usage
hydraulicCutOff2(theta_R, a1, a2, p1, p2, graph = FALSE, ...)
Arguments
theta_R |
the residual water content from Dexter's (2008) water retention curve (g/g). |
a1 |
a water content parameter from Dexter's (2008) water retention curve (g/g). |
a2 |
a water content parameter from Dexter's (2008) water retention curve (g/g). |
p1 |
a matric potential parameter from Dexter's (2008) water retention curve (hPa). |
p2 |
a matric potential parameter from Dexter's (2008) water retention curve (hPa). |
graph |
logical; if TRUE a graphical solution with the maximum curvature point is displayed. |
... |
further graphical arguments. See |
Details
The arguments are the fitting parameters from Dexter's (2008) water retention curve, which can be fitted using
fitsoilwater3
. Further examples of how to use these parameters are given in Dexter et al. (2012).
Value
A data.frame
containing the values of matric potential (hPa), pF and water content (w) at the hydraulic cut-off (hco) point.
Author(s)
Renato Paiva de Lima <renato_agro_@hotmail.com>
References
Dexter, A.R.; Czyz, E.A.; Richard, G.; Reszkowska, A. (2008). A user-friendly water retention function that takes account of the textural and structural pore spaces in soil. Geoderma, 143:243–253.
Dexter, A.R., Czyz, E.A., Richard, G. (2012). Equilibrium, non-equilibrium and residual water: consequences for soil water retention. Geoderma, 177:63–71.
See Also
hydraulicCutOff
, fitsoilwater3
Examples
# Example 1: soils from Dexter et al. (2012), Table 4
hydraulicCutOff2(theta_R=0.1130,a1=0.0808,a2=0.0576,p1=4043.2,p2=269.1,
graph = TRUE, ylim=c(-0.05,0.15)) # Soil 1
hydraulicCutOff2(theta_R=0.0998,a1=0.1456,a2=0.0162,p1=3156.0,p2=71.51,
graph = TRUE, ylim=c(-0.20,0.30)) # Soil 4
hydraulicCutOff2(theta_R=0.0709,a1=0.0195,a2=0.1794,p1=4467.5,p2=1395.5,
graph = TRUE, ylim=c(-0.20,0.30)) # Soil 7
hydraulicCutOff2(theta_R=0.0359,a1=0.1014,a2=0.0459,p1=1282.4,p2=56.93,
graph = TRUE, ylim=c(-0.10,0.20)) # Soil 10
hydraulicCutOff2(theta_R=0.0736,a1=0.0522,a2=0.0321,p1=3516.2,p2=90.54,
graph = TRUE, ylim=c(-0.05,0.15)) # Soil 14
# Example 2:
# Fitting the water retention curve through the Dexter's (2008) curve
h <- c(0.001, 50.65, 293.77, 790.14, 992.74, 5065, 10130, 15195)
w <- c(0.5650, 0.4013, 0.2502, 0.2324, 0.2307, 0.1926, 0.1812, 0.1730)
if (interactive()) {
fitsoilwater3(theta=w, x=h)
}
# Using the fitted parameter
hydraulicCutOff2(theta_R=0.1738,a1=0.07505,a2=0.316,p1=3673,p2=70.38,
graph = TRUE, ylim=c(-0.40,0.60))
# End (not run)