L2Scores {socialranking}R Documentation

L2 Ranking

Description

Calculate the L(2)L^{(2)} scores.

Usage

L2Scores(powerRelation, elements = powerRelation$elements)

L2Ranking(powerRelation)

lexcel2Scores(powerRelation, elements = powerRelation$elements)

lexcel2Ranking(powerRelation)

Arguments

powerRelation

A PowerRelation object created by PowerRelation() or as.PowerRelation()

elements

Vector of elements of which to calculate their scores. By default, the scores of all elements in powerRelation$elements are considered.

Details

Let NN be a set of elements, T(P)\succsim \in \mathcal{T}(\mathcal{P}) a power relation, and Σ1Σ2Σm\Sigma_1 \succ \Sigma_2 \succ \dots \succ \Sigma_m its corresponding quotient order.

For an element iNi \in N, construct a matrix MiM^\succsim_i with mm columns and N|N| rows. Whereas each column qq represents an equivalence class, each row pp corresponds to the coalition size.

(Mi)p,q={SΣq:S=p and iS}(M^\succsim_i)_{p,q} = |\lbrace S \in \Sigma_q: |S| = p \text{ and } i \in S\rbrace|

Given two elements i,jNi, j \in N, L(2)L^{(2)} then ranks ii strictly above jj if there is some row p0{1,,N}p^0 \in \lbrace 1, \dots, |N| \rbrace and column q0{1,,m}q^0 \in \lbrace 1, \dots, m \rbrace such that

  1. p=1N(Mi)p,q=p=1N(Mj)p,q for all q<q0\sum_{p = 1}^{|N|} (M^\succsim_i)_{p,q} = \sum_{p = 1}^{|N|} (M^\succsim_j)_{p,q}\text{ for all } q < q^0,

  2. {(i)i either p=1N(Mi)p,q0>p=1N(Mj)p,q0(ii) or (Mi)p0,q0>(Mj)p0,q0 and (Mi)p,q0=(Mj)p,q0 for all p<p0\begin{cases} \text{(i)\hphantom{i} either } & \sum_{p=1}^{|N|} (M^\succsim_i)_{p,q^0} > \sum_{p=1}^{|N|} (M^\succsim_j)_{p,q^0}\\[5pt] \text{(ii) or } & (M^\succsim_i)_{p^0,q^0} > (M^\succsim_j)_{p^0,q^0} \text{ and } (M^\succsim_i)_{p,q^0} = (M^\succsim_j)_{p,q^0} \text{ for all } p < p^0 \end{cases}

Note that the conditions are very similar to L1Ranking(), with the difference that condition 3.(i) also ranks an element over another if they simply appear more often in an equivalence class, regardless of coalition size. This implies that a row p0p^0 for condition 3.(ii) to be satisfied may not have to exist.

Value

Score function returns a list of type L2Scores and length of powerRelation$elements (unless parameter elements is specified). Each index contains a matrix with length(powerRelation$eqs) columns and 1 + length(powerRelation$elements) rows.

Ranking function returns corresponding SocialRanking object.

Example

Let N={1,2,3,4}N = \lbrace 1, 2, 3, 4 \rbrace and :(12312131424)S\succsim: (123 \sim 12 \sim 13 \sim 14 \sim 2 \sim 4) \succ S, where SS is every other coalition not present in the first equivalence class. From this, we get the following four matrices:

M1=[01301201]M2=[10121201]M3=[01121201]M4=[10120301] M^\succsim_1 = \begin{bmatrix} 0 & 1\\ 3 & 0\\ 1 & 2\\ 0 & 1 \end{bmatrix} M^\succsim_2 = \begin{bmatrix} 1 & 0\\ 1 & 2\\ 1 & 2\\ 0 & 1 \end{bmatrix} M^\succsim_3 = \begin{bmatrix} 0 & 1\\ 1 & 2\\ 1 & 2\\ 0 & 1 \end{bmatrix} M^\succsim_4 = \begin{bmatrix} 1 & 0\\ 1 & 2\\ 0 & 3\\ 0 & 1 \end{bmatrix}

For the sums in column 1, we get

p=14(M1)p,1=4,p=14(M2)p,1=3,p=14(M3)p,1=p=14(M4)p,1=2.\begin{aligned}\sum_{p=1}^{4} (M^\succsim_1)_{p,1} &= 4,\\\sum_{p=1}^{4} (M^\succsim_2)_{p,1} &= 3,\\\sum_{p=1}^{4} (M^\succsim_3)_{p,1} = \sum_{p=1}^{4} (M^\succsim_4)_{p,1} &= 2\end{aligned}.

This immediately puts 11 above all other elements and 22 above 33 and 44 according to the L(2)L^{(2)}. L(1)L^{(1)} would in this case prefer 22 over 11, simply because 22 appears once in a coalition of size 1 and 11 doesn't.

Since the column sum for 33 and 44 is the same, we can next evaluate if the individual row values are also the same. Here, since (M4)1,1>(M3)1,1(M^\succsim_4)_{1,1} > (M^\succsim_3)_{1,1}, this gives an edge of element 44 over 33.

Note that, if the column was identical for 33 and 44, we would go to the next column and repeat the process. Elements are only then considered indifferent from each other, if the entire matrix is identical between the two.

Alterations

The matrices as described above and in Béal S, Rémila E, Solal P (2022). “Lexicographic solutions for coalitional rankings based on individual and collective performances.” Journal of Mathematical Economics, 102, 102738. can be investigated with the L1Scores() function.

For less complexity, another row is prepended to the matrix showing the sum of each column. Through this, a simple L(1)L^{(1)} comparison can be applied.

Aliases

For better discoverability, lexcel2Scores() and lexcel2Ranking() serve as aliases for L2Scores() and L2Ranking(), respectively.

References

Algaba E, Moretti S, Rémila E, Solal P (2021). “Lexicographic solutions for coalitional rankings.” Social Choice and Welfare, 57(4), 1–33.

See Also

Other ranking solution functions: L1Scores(), LPSScores(), LPScores(), copelandScores(), cumulativeScores(), kramerSimpsonScores(), lexcelScores(), ordinalBanzhafScores()

Examples

pr <- as.PowerRelation("123 ~ 12 ~ 13 ~ 14 ~ 2 ~ 4")
pr <- appendMissingCoalitions(pr)
scores <- L2Scores(pr)
scores$`1`
#      [,1] [,2]
# [1,]    0    1
# [2,]    3    0
# [3,]    1    2
# [3,]    0    1

L2Ranking(pr)
# 1 > 2 > 4 > 3

L1Ranking(pr)
# 2 > 4 > 1 > 3


[Package socialranking version 1.2.0 Index]