L1Scores {socialranking}R Documentation

L1 Ranking

Description

Calculate the L(1)L^{(1)} scores.

Usage

L1Scores(powerRelation, elements = powerRelation$elements)

L1Ranking(powerRelation)

lexcel1Scores(powerRelation, elements = powerRelation$elements)

lexcel1Ranking(powerRelation)

Arguments

powerRelation

A PowerRelation object created by PowerRelation() or as.PowerRelation()

elements

Vector of elements of which to calculate their scores. By default, the scores of all elements in powerRelation$elements are considered.

Details

Similar to lexcelRanking(), the number of times an element appears in each equivalence class is counted. In addition, we now also consider the size of the coalitions.

Let NN be a set of elements, T(P)\succsim \in \mathcal{T}(\mathcal{P}) a power relation, and Σ1Σ2Σm\Sigma_1 \succ \Sigma_2 \succ \dots \succ \Sigma_m its corresponding quotient order.

For an element iNi \in N, construct a matrix MiM^\succsim_i with mm columns and N|N| rows. Whereas each column qq represents an equivalence class, each row pp corresponds to the coalition size.

(Mi)p,q={SΣq:S=p and iS}(M^\succsim_i)_{p,q} = |\lbrace S \in \Sigma_q: |S| = p \text{ and } i \in S\rbrace|

The L(1)L^{(1)} rewards elements that appear in higher ranking coalitions as well as in smaller coalitions. When comparing two matrices for a power relation, if Mi>L(1)MjM^\succsim_i >_{L^{(1)}} M^\succsim_j, this suggests that there exists a p0{1,,N}p^0 \in \{1, \dots, |N|\} and q0{1,,m}q^0 \in \{1, \dots, m\} such that the following holds:

  1. (Mi)p0,q0>(Mj)p0,q0(M^\succsim_i)_{p^0,q^0} > (M^\succsim_j)_{p^0,q^0}

  2. (Mi)p,q0=(Mj)p,q0(M^\succsim_i)_{p,q^0} = (M^\succsim_j)_{p,q^0} for all p<p0p < p^0

  3. (Mi)p,q=(Mj)p,q(M^\succsim_i)_{p,q} = (M^\succsim_j)_{p,q} for all q<q0q < q^0 and p{1,,N}p \in \{1, \dots, |N|\}

Value

Score function returns a list of type L1Scores and length of powerRelation$elements (unless parameter elements is specified). Each index contains a vector of length powerRelation$eqs, the number of times the given element appears in each equivalence class.

Ranking function returns corresponding SocialRanking object.

Example

Let :(123132)(1213)(23{})\succsim: (123 \sim 13 \sim 2) \succ (12 \sim 1 \sim 3) \succ (23 \sim \{\}). From this, we get the following three matrices:

M1=[010110100]M2=[100011100]M3=[010101100] M^\succsim_1 = \begin{bmatrix} 0 & 1 & 0\\ 1 & 1 & 0\\ 1 & 0 & 0 \end{bmatrix} M^\succsim_2 = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 1\\ 1 & 0 & 0 \end{bmatrix} M^\succsim_3 = \begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 1 & 0 & 0 \end{bmatrix}

From (M2)1,1>(M1)1,1(M^\succsim_2)_{1,1} > (M^\succsim_1)_{1,1} and (M2)1,1>(M3)1,1(M^\succsim_2)_{1,1} > (M^\succsim_3)_{1,1} it immediately follows that 22 is ranked above 11 and 33 according to L(1)L^{(1)}.

Comparing 11 against 33 we can set p0=2p^0 = 2 and q0=2q^0 = 2. Following the constraints from the definition above, we can verify that the entire column 1 is identical. In column 2, we determine that (M1)1,q0=(M3)1,q0(M^\succsim_1)_{1,q^0} = (M^\succsim_3)_{1,q^0}, whereas (M1)p0,q0>(M3)p0,q0(M^\succsim_1)_{p^0,q^0} > (M^\succsim_3)_{p^0,q^0}, indicating that 11 is ranked higher than 33, hence 2132 \succ 1 \succ 3 according to L(1)L^{(1)}.

Aliases

For better discoverability, lexcel1Scores() and lexcel1Ranking() serve as aliases for L1Scores() and L1Ranking(), respectively.

References

Algaba E, Moretti S, Rémila E, Solal P (2021). “Lexicographic solutions for coalitional rankings.” Social Choice and Welfare, 57(4), 1–33.

See Also

Other ranking solution functions: L2Scores(), LPSScores(), LPScores(), copelandScores(), cumulativeScores(), kramerSimpsonScores(), lexcelScores(), ordinalBanzhafScores()

Examples

pr <- as.PowerRelation("(123 ~ 13 ~ 2) > (12 ~ 1 ~ 3) > (23 ~ {})")
scores <- L1Scores(pr)
scores$`1`
#      [,1] [,2] [,3]
# [1,]    0    1    0
# [2,]    1    1    0
# [3,]    1    0    0

L1Ranking(pr)
# 2 > 1 > 3


[Package socialranking version 1.2.0 Index]