| fit_spm {smile} | R Documentation |
Fitting an underlying continuous process to areal data
Description
Fitting an underlying continuous process to areal data
Usage
fit_spm(x, ...)
## S3 method for class 'spm'
fit_spm(
x,
model,
theta_st,
nu = NULL,
tr = NULL,
kappa = 1,
mu2 = 1.5,
apply_exp = FALSE,
opt_method = "Nelder-Mead",
control_opt = list(),
comp_hess = TRUE,
...
)
fit_spm2(
x,
model,
nu,
tr,
kappa = 1,
mu2 = 1.5,
comp_hess = TRUE,
phi_min,
phi_max,
nphi = 10,
cores = getOption("mc.cores", 1L)
)
Arguments
x |
an object of type |
... |
additional parameters, either passed to stats::optim. |
model |
a |
theta_st |
a |
nu |
a |
tr |
tapper range |
kappa |
|
mu2 |
the smoothness parameter |
apply_exp |
a |
opt_method |
a |
control_opt |
a named |
comp_hess |
a |
phi_min |
a |
phi_max |
a |
nphi |
a |
cores |
a |
Details
This function uses the stats::optim function optimization
algorithms to find the Maximum Likelihood estimators, and their standard
errors, from a model adapted from. The function allows the user to input
the control parameters from the stats::optim function through the argument
control_opt, which is a named list. Additionally, the one can
input lower and upper boundaries for the optimization problem, as well
as the preferred optimization algorithm (as long as it is available for
stats::optim). The preferred algorithm is selected by the argument
opt_method. In addition to the control of the optimization, the
user can select a covariance function among the following: Matern,
Exponential, Powered Exponential, Gaussian, and Spherical. The parameter
apply_exp is a logical scalar such that, if set to
TRUE, the \exp function is applied to the nonnegative
parameters, allowing the optimization algorithm to search for all the
parameters over the real numbers.
The model assumes \deqn{Y(\mathbf{s}) = \mu + S(\mathbf{s})} at the
point level. Where \eqn{S ~ GP(0, \sigma^2 C(\lVert \mathbf{s} -
\mathbf{s}_2 \rVert; \theta))}. Further, the observed data is supposed
to be \eqn{Y(B) = \lvert B \rvert^{-1} \int_{B} Y(\mathbf{s}) \,
\textrm{d} \mathbf{s}}.
Value
a spm_fit object containing the information about the
estimation of the model parameters.
Examples
data(liv_lsoa) ## loading the LSOA data
msoa_spm <- sf_to_spm(sf_obj = liv_msoa, n_pts = 500,
type = "regular", by_polygon = FALSE,
poly_ids = "msoa11cd",
var_ids = "leb_est")
## fitting model
theta_st_msoa <- c("phi" = 1) # initial value for the range parameter
fit_msoa <-
fit_spm(x = msoa_spm,
theta_st = theta_st_msoa,
model = "matern",
nu = .5,
apply_exp = TRUE,
opt_method = "L-BFGS-B",
control = list(maxit = 500))
AIC(fit_msoa)
summary_spm_fit(fit_msoa, sig = .05)