smdi_na_indicator {smdi} | R Documentation |
Create binary missing indicator variables by two different strategies
Description
This function takes a dataframe and creates binary missing indicator variable. This can be realized with two different approaches:
Approach 1 (drop_NA_col = FALSE): creates a binary missing indicator variable for partially observed variables and retains both original and indicator variables.
Approach 2 (drop_NA_col = TRUE): creates a binary missing indicator variable for partially observed variables and only retains indicator variables (and drops the original variables).
Important: Make sure you have your variables format correct and avoid to include variables like ID variables, ZIP codes, dates, etc.
Usage
smdi_na_indicator(data = NULL, covar = NULL, drop_NA_col = TRUE)
Arguments
data |
dataframe or tibble object with partially observed/missing variables |
covar |
character covariate or covariate vector with partially observed variable/column name(s) to investigate. If NULL, the function automatically includes all columns with at least one missing observation. |
drop_NA_col |
logical, drop specified columns with NA (default) or retain those columns |
Value
returns the dataframe with missing indicator variables (column names are ending on "_NA")
Examples
library(smdi)
library(dplyr)
smdi_data %>%
smdi_na_indicator(drop_NA_col = FALSE) %>%
glimpse()
smdi_data %>%
smdi_na_indicator(drop_NA_col = TRUE) %>%
glimpse()