Perform Structural Missing Data Investigations


[Up] [Top]

Documentation for package ‘smdi’ version 0.3.0

Help Pages

smdi_asmd Computes mean/median absolute standardized mean differences between observed and missing observations
smdi_check_covar This is a utility function to help check input data and covariates provided
smdi_data smdi exemplary lung cancer dataset
smdi_data_complete smdi exemplary lung cancer dataset (with complete data)
smdi_diagnose Computes three group missing data summary diagnostics
smdi_hotelling Computes hotelling's multivariate t-test
smdi_little Computes Little's test
smdi_na_indicator Create binary missing indicator variables by two different strategies
smdi_outcome Computes association between missingness and outcome
smdi_rf Computes random forest-based AUC
smdi_style_gt Takes an object of class smdi and styles it to a publication-ready gt table
smdi_summarize Utility helper to give a light summary of partially observed covariates
smdi_vis Quick ggplot2 barchart visualization of partially observed/missing variables