vcov {smam} | R Documentation |
Variance-Covariance Matrix of smam Estimators
Description
This function calculates variance covariance matrix for estimators from smam package. Different methods will be used for different 'smam' models.
Usage
## S3 method for class 'smam_mrme'
vcov(
object,
nBS = 25,
detailBS = TRUE,
numThreads = 5,
gradMethod = "simple",
vcovMethod = "pBootstrap",
integrControl = integr.control(),
...
)
## S3 method for class 'smam_mm'
vcov(
object,
nBS = 25,
detailBS = TRUE,
numThreads = 5,
integrControl = integr.control(),
...
)
## S3 method for class 'smam_mrh'
vcov(object, numThreads = 5, integrControl = integr.control(), ...)
## S3 method for class 'smam_mr'
vcov(object, ...)
## S3 method for class 'smam_bmme'
vcov(object, ...)
Arguments
object |
a fitted object from one of 'smam::fitXXXX' functions |
nBS |
number of bootstrap. |
detailBS |
whether or not output estimation results of bootstrap, which can be used to generate bootstrap CI. Required when ‘vcovMethod==’pBootstrap''. |
numThreads |
the number of threads for parallel computation. If its value is greater than 1, then parallel computation will be processed. Otherwise, serial computation will be processed. |
gradMethod |
method used for numeric gradient ( |
vcovMethod |
method of calculating variance covariance matrix. This should be one of 'pBootstrap' (default) and 'Godambe'. |
integrControl |
a list of control parameters for the |
... |
Optional arguments that are not used |
Examples
## time consuming example
#tgrid <- seq(0, 100, length=100)
#set.seed(123)
#dat <- rMRME(tgrid, 1, 0.5, 1, 0.01, "m")
## fit whole dataset to the MRME model
#fit <- fitMRME(dat, start=c(1, 0.5, 1, 0.01))
#fit
## get covariance matrix of estimators
#vcov(fit)