apStressMin {smacofx} | R Documentation |
Approximate Power Stress MDS
Description
An implementation to minimize approximate power stress by majorization with ratio or interval optimal scaling. This approximates the power stress objective in such a way that it can be fitted with SMACOF without distance transformations. See Rusch et al. (2021) for details.
Usage
apStressMin(
delta,
kappa = 1,
lambda = 1,
nu = 1,
type = "ratio",
weightmat = 1 - diag(nrow(delta)),
init = NULL,
ndim = 2,
acc = 1e-06,
itmax = 10000,
verbose = FALSE,
principal = FALSE
)
apowerstressMin(
delta,
kappa = 1,
lambda = 1,
nu = 1,
type = "ratio",
weightmat = 1 - diag(nrow(delta)),
init = NULL,
ndim = 2,
acc = 1e-06,
itmax = 10000,
verbose = FALSE,
principal = FALSE
)
apostmds(
delta,
kappa = 1,
lambda = 1,
nu = 1,
type = "ratio",
weightmat = 1 - diag(nrow(delta)),
init = NULL,
ndim = 2,
acc = 1e-06,
itmax = 10000,
verbose = FALSE,
principal = FALSE
)
apstressMin(
delta,
kappa = 1,
lambda = 1,
nu = 1,
type = "ratio",
weightmat = 1 - diag(nrow(delta)),
init = NULL,
ndim = 2,
acc = 1e-06,
itmax = 10000,
verbose = FALSE,
principal = FALSE
)
apstressmds(
delta,
kappa = 1,
lambda = 1,
nu = 1,
type = "ratio",
weightmat = 1 - diag(nrow(delta)),
init = NULL,
ndim = 2,
acc = 1e-06,
itmax = 10000,
verbose = FALSE,
principal = FALSE
)
Arguments
delta |
dist object or a symmetric, numeric data.frame or matrix of distances |
kappa |
power of the transformation of the fitted distances; defaults to 1 |
lambda |
the power of the transformation of the proximities; defaults to 1 |
nu |
the power of the transformation for weightmat; defaults to 1 |
type |
what type of MDS to fit. Only "ratio" currently. |
weightmat |
a binary matrix of finite nonegative weights. |
init |
starting configuration |
ndim |
dimension of the configuration; defaults to 2 |
acc |
numeric accuracy of the iteration. Default is 1e-6. |
itmax |
maximum number of iterations. Default is 10000. |
verbose |
should iteration output be printed; if > 1 then yes |
principal |
If 'TRUE', principal axis transformation is applied to the final configuration |
Value
a 'smacofP' object (inheriting from 'smacofB', see smacofSym
). It is a list with the components
delta: Observed, untransformed dissimilarities
tdelta: Observed explicitly transformed dissimilarities, normalized
dhat: Explicitly transformed dissimilarities (dhats), optimally scaled and normalized
confdist: Configuration dissimilarities
conf: Matrix of fitted configuration
stress: Default stress (stress 1; sqrt of explicitly normalized stress)
spp: Stress per point
ndim: Number of dimensions
model: Name of smacof model
niter: Number of iterations
nobj: Number of objects
type: Type of MDS model
weightmat: weighting matrix as supplied
stress.m: Default stress (stress-1^2)
tweightmat: transformed weighting matrix (here weightmat^nu)
Note
Internally we calculate the approximation parameters upsilon=nu+2*lambda*(1-(1/kappa)) and tau=lambda/kappa. They are not output.
References
Rusch, Mair, Hornik (2021). Cluster Optimized Proximity Scaling. JCGS <doi:10.1080/10618600.2020.1869027>
Examples
dis<-smacof::kinshipdelta
res<-apStressMin(as.matrix(dis),kappa=2,lambda=1.5,itmax=1000)
res
summary(res)
plot(res)
plot(res,"Shepard")
plot(res,"transplot")