summary.slm {slm} | R Documentation |
Summarizing Stationary Linear Model Fits
Description
Summary method for class "slm
".
Usage
## S3 method for class 'slm'
summary(object, correlation = FALSE,
symbolic.cor = FALSE, ...)
Arguments
object |
an object of class " |
correlation |
logical. If |
symbolic.cor |
logical. If |
... |
further arguments passed to or from other methods. |
Value
The function summary.slm
computes and returns a list of summary statistics of the fitted linear model
given in object
, using the components (list elements) "call
" and "terms
" from its argument, plus:
residuals |
the residuals, that is response minus fitted values. |
coefficients |
a |
aliased |
named logical vector showing if the original coefficients are aliased. |
sigma |
the square root of the estimated variance of the error process. |
df |
degrees of freedom, a 3-vector |
chi2statistic |
a 2-vector with the value of the chi2-statistic with its degree of freedom. |
r.squared |
|
cov.unscaled |
the matrix |
correlation |
the correlation matrix corresponding to the above |
symbolic.cor |
(only if |
References
E. Caron, J. Dedecker and B. Michel (2019). Linear regression with stationary errors: the R package slm. arXiv preprint arXiv:1906.06583. https://arxiv.org/abs/1906.06583.
See Also
The model fitting function slm
, summary
.
The function coef
extracts the matrix of coefficients with standard errors, z-statistics and p-values.
Examples
data("shan")
reg1 = slm(shan$PM_Xuhui ~ . , data = shan, method_cov_st = "fitAR", model_selec = -1)
summary(reg1)
data("co2")
y = as.vector(co2)
x = as.vector(time(co2)) - 1958
reg2 = slm(y ~ x + I(x^2) + I(x^3) + sin(2*pi*x) + cos(2*pi*x) + sin(4*pi*x) +
cos(4*pi*x) + sin(6*pi*x) + cos(6*pi*x) + sin(8*pi*x) + cos(8*pi*x),
method_cov_st = "fitAR", model_selec = -1)
summary(reg2)