cov_kernel {slm} | R Documentation |
Kernel estimation: bootstrap method
Description
This method estimates the spectral density and the autocovariances of the error process via a lag-window
(or kernel) estimator (see P.J. Brockwell and R.A. Davis (1991). Time Series: Theory and Methods. Springer Science & Business Media,
page 330). The weights are computed according to a kernel K
and a bandwidth h
(or a lag),
to be chosen by the user. The lag can be computed automatically by using a bootstrap technique (as in Wu and Pourahmadi (2009)), via the Rboot
function.
Usage
cov_kernel(epsilon, model_selec = -1,
model_max = min(50,length(epsilon)/2), kernel_fonc = triangle,
block_size = length(epsilon)/2, block_n = 100, plot = FALSE)
Arguments
epsilon |
numeric vector. An univariate process. |
model_selec |
integer or |
model_max |
integer. The maximal order. |
kernel_fonc |
function. Defines the kernel to use in the method. The user can give his own kernel function. |
block_size |
integer. If |
block_n |
integer. If |
plot |
logical. By default, |
Value
The method returns the tapered autocovariance vector with model_selec
autocovariance terms.
model_selec |
the number of selected autocovariance terms. |
cov_st |
the estimated autocovariances. |
References
E. Caron, J. Dedecker and B. Michel (2019). Linear regression with stationary errors: the R package slm. arXiv preprint arXiv:1906.06583. https://arxiv.org/abs/1906.06583.
W.B. Wu, M. Pourahmadi (2009). Banding sample autocovariance matrices of stationary processes. Statistica Sinica, pp. 1755–1768.
Examples
x = arima.sim(list(ar=c(0.7)),1000)
cov_kernel(x, model_selec = -1, block_n = 10, plot = TRUE)