Rboot {slm} | R Documentation |
Risk estimation for a tapered covariance matrix estimator via bootstrap method
Description
This function computes an estimation of the risk for the tapered covariance matrix estimator of a process via a bootstrap method, for a specified treshold and a specified kernel.
Usage
Rboot(epsilon, treshold, block_size, block_n, model_max, kernel_fonc)
Arguments
epsilon |
numeric vector. An univariate process. |
treshold |
integer. Number of estimated autocovariance terms that we consider for the estimation of the covariance matrix. |
block_size |
integer. The size of the bootstrap blocks. |
block_n |
integer. Blocks number used for the bootstrap. |
model_max |
integer. The maximal dimension, that is the maximal number of terms available to estimate the covariance matrix. |
kernel_fonc |
function. The kernel to use. The user can define his own kernel and put it in the argument. |
Value
This function returns a list with:
risk |
for one treshold, the value of the estimated risk. |
SE |
the standard-error due to the bootstrap. |
References
E. Caron, J. Dedecker and B. Michel (2019). Linear regression with stationary errors: the R package slm. arXiv preprint arXiv:1906.06583. https://arxiv.org/abs/1906.06583.