rsmsn.lmm {skewlmm} | R Documentation |
Generate data from SMSN-LMM
Description
It creates a simulated data set from SMSN-LMM (or from SMN-LMM, if lambda = 0
) with several possible dependence structures, for one subject.
Usage
rsmsn.lmm(time1, x1, z1, sigma2, D1, beta, lambda, depStruct = "UNC",
phi = NULL, distr = "sn", nu = NULL)
Arguments
time1 |
Vector containing times that should be used in data generation. |
x1 |
Design matrix for fixed effects. |
z1 |
Design matrix for random effects. |
sigma2 |
Common variance parameter, such that |
D1 |
Variance matrix for random effects. |
beta |
Vector of fixed effects parameter. |
lambda |
Skewness parameter of random effects. |
depStruct |
Dependence structure. |
phi |
Parameter vector indexing the dependence structure. |
distr |
Distribution that should be used. |
nu |
Parameter vector indexing |
Value
A data frame containing time, the generated response variable (y
), and possible covariates.
Author(s)
Fernanda L. Schumacher, Larissa A. Matos and Victor H. Lachos
References
Lachos, V. H., P. Ghosh, and R. B. Arellano-Valle (2010). Likelihood based inference for skew-normal independent linear mixed models. Statistica Sinica 20, 303-322.
Schumacher, F. L., Lachos, V. H., and Matos, L. A. (2021). Scale mixture of skew-normal linear mixed models with within-subject serial dependence. Statistics in Medicine 40(7), 1790-1810.
See Also
Examples
# Generating a sample for 1 individual at 5 times
nj1 = 5
rsmsn.lmm(1:nj1, cbind(1, 1:nj1), rep(1, nj1), sigma2=.25, D1=diag(1),
beta=c(1, 2), lambda=2, depStruct="ARp", phi=.5,
distr="st", nu=5)
# Generating a sample for m=25 individuals with 5 times
library(dplyr)
library(purrr)
library(ggplot2)
nj1 = 5
m = 25
gendatList = map(rep(nj1, m),
function(nj) rsmsn.lmm(1:nj, cbind(1, 1:nj), rep(1, nj),
sigma2=.25, D1=.5*diag(1), beta=c(1, 2),
lambda=2, depStruct="ARp", phi=.5))
gendat = bind_rows(gendatList, .id="ind")
ggplot(gendat, aes(x=x, y=y, group=ind)) + geom_line() +
stat_summary(aes(group=1), geom="line", fun=mean, col="blue", size=2)
#
fm1 = smsn.lmm(y ~ x, data=gendat, groupVar="ind", depStruct="ARp",
pAR=1)
summary(fm1)