predict.SMNclmm {skewlmm} | R Documentation |
Prediction of future observations from an smn.clmm object
Description
Predicted values are obtained through conditional expectation. For details, see Schumacher, Lachos, and Matos (2021).
Usage
## S3 method for class 'SMNclmm'
predict(object, newData, ...)
Arguments
object |
An object inheriting from class |
newData |
A data frame for which response variable should be predicted, including covariates, groupVar and possibly timeVar. If missing or |
... |
Additional arguments. |
Value
A data frame with covariates, groupVar and ypred, where ypred contains the predicted values from the response variable.
Author(s)
Fernanda L. Schumacher, Larissa A. Matos, Victor H. Lachos and Katherine L. Valeriano
References
Schumacher, F. L., Lachos, V. H., and Matos, L. A. (2021). Scale mixture of skew-normal linear mixed models with within-subject serial dependence. Statistics in Medicine 40(7), 1790-1810.
See Also
Examples
# Simulated example: 20 individuals with 5 times for estimation and
# 1 time for prediction
set.seed(963)
nj1 = 6; m = 20
time = rep(1:nj1, times=m)
groups = as.factor(rep(1:m, each=nj1))
dat1 = rsmsn.clmm(time, groups, cbind(1,time), rep(1,m*nj1), sigma2=0.4,
D=0.6*diag(1), beta=c(1,2), depStruct="CS", phi=0.25)
# Estimation
fm1 = smn.clmm(subset(dat1,time<6), formFixed=y~x, groupVar="ind",
depStruct="CS", ci="ci", lcl="lcl", ucl="ucl",
control=lmmControl(max.iter=30, tol=1e-4))
# Prediction
pred = predict(fm1, subset(dat1,time==6))
# MSPE
mean((subset(dat1,time==6)$y - pred$ypred)^2)