lmmControl {skewlmm} | R Documentation |
Control options for smsn.lmm()
, smn.lmm()
and smn.clmm()
Description
The values supplied in the function call replace the defaults and a list with all possible arguments is returned. The returned list has class "lmmControl"
and is used as the control argument to the smsn.lmm()
, smn.lmm()
and smn.clmm()
functions.
Usage
lmmControl(tol = 1e-06, max.iter = 300, calc.se = TRUE, lb = NULL,
lu = NULL, luDEC = 10,
initialValues = list(beta = NULL, sigma2 = NULL, D = NULL,
lambda = NULL, phi = NULL, nu = NULL),
quiet = FALSE, showCriterium = FALSE, algorithm = "DAAREM",
parallelphi = NULL, parallelnu = NULL, ncores = NULL,
control.daarem = list())
Arguments
tol |
Tolerance for the convergence criterion. Default = |
max.iter |
Maximum number of iterations for the EM algorithm. Default = |
calc.se |
A logical value indicating if standard errors should be calculated. |
lb |
Optional. Bottom limit for estimating |
lu |
Optional. Upper limit for estimating |
luDEC |
Optional. Upper limit for estimating the "damping" parameter for DEC covariance. If |
initialValues |
Optional. A named list containing initial parameter values, with at most the following elements: |
quiet |
A logical value indicating if the iteration message should be suppressed. Useful when calling the function in R Markdown. |
showCriterium |
A logical value indicating if the criterium should be shown at each iteration. |
algorithm |
Algorithm to be used for estimation, either |
parallelphi |
A logical value indicating if parallel optimization should be used in the numerical update of the parameters related to the within-subject dependence structure. Default is |
parallelnu |
A logical value indicating if parallel optimization should be used in the numerical update of nu. Meaningless if |
ncores |
Number of cores to be used for the parallel optimization. Meaningless if |
control.daarem |
List of control for the daarem algorithm. See |
Author(s)
Fernanda L. Schumacher, Larissa A. Matos and Victor H. Lachos
References
Henderson, N.C. and Varadhan, R. (2019) Damped Anderson acceleration with restarts and monotonicity control for accelerating EM and EM-like algorithms, Journal of Computational and Graphical Statistics, Vol. 28(4), 834-846.
Schumacher, F. L., Lachos, V. H., and Matos, L. A. (2021). Scale mixture of skew-normal linear mixed models with within-subject serial dependence. Statistics in Medicine 40(7), 1790-1810.
See Also
smsn.lmm
, smn.lmm
, smn.clmm
, update
Examples
lmmControl(algorithm = "EM")
fm1 = smn.lmm(nlme::Orthodont, formFixed=distance ~ age+Sex,
groupVar="Subject", control=lmmControl(tol=1e-7))