add_columns {sjmisc} | R Documentation |
Add or replace data frame columns
Description
add_columns()
combines two or more data frames, but unlike
cbind
or dplyr::bind_cols()
, this function
binds data
as last columns of a data frame (i.e., behind columns
specified in ...
). This can be useful in a "pipe"-workflow, where
a data frame returned by a previous function should be appended
at the end of another data frame that is processed in
add_colums()
.
replace_columns()
replaces all columns in data
with
identically named columns in ...
, and adds remaining (non-duplicated)
columns from ...
to data
.
add_id()
simply adds an ID-column to the data frame, with values
from 1 to nrow(data)
, respectively for grouped data frames, values
from 1 to group size. See 'Examples'.
Usage
add_columns(data, ..., replace = TRUE)
replace_columns(data, ..., add.unique = TRUE)
add_id(data, var = "ID")
Arguments
data |
A data frame. For |
... |
More data frames to combine, resp. more data frames with columns
that should replace columns in |
replace |
Logical, if |
add.unique |
Logical, if |
var |
Name of new the ID-variable. |
Value
For add_columns()
, a data frame, where columns of data
are appended after columns of ...
.
For replace_columns()
, a data frame where columns in data
will be replaced by identically named columns in ...
, and remaining
columns from ...
will be appended to data
(if
add.unique = TRUE
).
For add_id()
, a new column with ID numbers. This column is always
the first column in the returned data frame.
Note
For add_columns()
, by default, columns in data
with
identical names like columns in one of the data frames in ...
will be dropped (i.e. variables with identical names in ...
will
replace existing variables in data
). Use replace = FALSE
to
keep all columns. Identical column names will then be renamed, to ensure
unique column names (which happens by default when using
dplyr::bind_cols()
). When replacing columns, replaced columns
are not added to the end of the data frame. Rather, the original order of
columns will be preserved.
Examples
data(efc)
d1 <- efc[, 1:3]
d2 <- efc[, 4:6]
if (require("dplyr") && require("sjlabelled")) {
head(bind_cols(d1, d2))
add_columns(d1, d2) %>% head()
d1 <- efc[, 1:3]
d2 <- efc[, 2:6]
add_columns(d1, d2, replace = TRUE) %>% head()
add_columns(d1, d2, replace = FALSE) %>% head()
# use case: we take the original data frame, select specific
# variables and do some transformations or recodings
# (standardization in this example) and add the new, transformed
# variables *to the end* of the original data frame
efc %>%
select(e17age, c160age) %>%
std() %>%
add_columns(efc) %>%
head()
# new variables with same name will overwrite old variables
# in "efc". order of columns is not changed.
efc %>%
select(e16sex, e42dep) %>%
to_factor() %>%
add_columns(efc) %>%
head()
# keep both old and new variables, automatically
# rename variables with identical name
efc %>%
select(e16sex, e42dep) %>%
to_factor() %>%
add_columns(efc, replace = FALSE) %>%
head()
# create sample data frames
d1 <- efc[, 1:10]
d2 <- efc[, 2:3]
d3 <- efc[, 7:8]
d4 <- efc[, 10:12]
# show original
head(d1)
library(sjlabelled)
# slightly change variables, to see effect
d2 <- as_label(d2)
d3 <- as_label(d3)
# replace duplicated columns, append remaining
replace_columns(d1, d2, d3, d4) %>% head()
# replace duplicated columns, omit remaining
replace_columns(d1, d2, d3, d4, add.unique = FALSE) %>% head()
# add ID to dataset
library(dplyr)
data(mtcars)
add_id(mtcars)
mtcars %>%
group_by(gear) %>%
add_id() %>%
arrange(gear, ID) %>%
print(n = 100)
}