sjmisc-package |
Data and Variable Transformation Functions |
%nin% |
Value matching |
add_case |
Add variables or cases to data frames |
add_columns |
Add or replace data frame columns |
add_id |
Add or replace data frame columns |
add_rows |
Merge labelled data frames |
add_variables |
Add variables or cases to data frames |
all_na |
Check if vector only has NA values |
big_mark |
Format numbers |
center |
Standardize and center variables |
center_if |
Standardize and center variables |
clean_values |
Clean values of character vectors. |
col_count |
Count row or column indices |
complete_cases |
Check if variables or cases have missing / infinite values |
complete_vars |
Check if variables or cases have missing / infinite values |
count_na |
Frequency table of tagged NA values |
descr |
Basic descriptive statistics |
de_mean |
Compute group-meaned and de-meaned variables |
dicho |
Dichotomize variables |
dicho_if |
Dichotomize variables |
efc |
Sample dataset from the EUROFAMCARE project |
empty_cols |
Return or remove variables or observations that are completely missing |
empty_rows |
Return or remove variables or observations that are completely missing |
find_in_data |
Find variable by name or label |
find_var |
Find variable by name or label |
flat_table |
Flat (proportional) tables |
frq |
Frequency table of labelled variables |
group_labels |
Recode numeric variables into equal-ranged groups |
group_labels_if |
Recode numeric variables into equal-ranged groups |
group_str |
Group near elements of string vectors |
group_var |
Recode numeric variables into equal-ranged groups |
group_var_if |
Recode numeric variables into equal-ranged groups |
has_na |
Check if variables or cases have missing / infinite values |
incomplete_cases |
Check if variables or cases have missing / infinite values |
incomplete_vars |
Check if variables or cases have missing / infinite values |
is_crossed |
Check whether two factors are crossed or nested |
is_cross_classified |
Check whether two factors are crossed or nested |
is_empty |
Check whether string, list or vector is empty |
is_even |
Check whether value is even or odd |
is_float |
Check if a variable is of (non-integer) double type or a whole number |
is_nested |
Check whether two factors are crossed or nested |
is_num_chr |
Check whether a factor has numeric levels only |
is_num_fac |
Check whether a factor has numeric levels only |
is_odd |
Check whether value is even or odd |
is_whole |
Check if a variable is of (non-integer) double type or a whole number |
merge_df |
Merge labelled data frames |
merge_imputations |
Merges multiple imputed data frames into a single data frame |
move_columns |
Move columns to other positions in a data frame |
numeric_to_factor |
Convert numeric vectors into factors associated value labels |
prcn |
Format numbers |
rec |
Recode variables |
recode_to |
Recode variable categories into new values |
recode_to_if |
Recode variable categories into new values |
rec_if |
Recode variables |
rec_pattern |
Create recode pattern for 'rec' function |
ref_lvl |
Change reference level of (numeric) factors |
remove_cols |
Remove variables from a data frame |
remove_empty_cols |
Return or remove variables or observations that are completely missing |
remove_empty_rows |
Return or remove variables or observations that are completely missing |
remove_var |
Remove variables from a data frame |
rename_columns |
Rename variables |
rename_variables |
Rename variables |
replace_columns |
Add or replace data frame columns |
replace_na |
Replace NA with specific values |
reshape_longer |
Reshape data into long format |
rotate_df |
Rotate a data frame |
round_num |
Round numeric variables in a data frame |
row_count |
Count row or column indices |
row_means |
Row sums and means for data frames |
row_means.default |
Row sums and means for data frames |
row_means.mids |
Row sums and means for data frames |
row_sums |
Row sums and means for data frames |
row_sums.default |
Row sums and means for data frames |
row_sums.mids |
Row sums and means for data frames |
seq_col |
Sequence generation for column or row counts of data frames |
seq_row |
Sequence generation for column or row counts of data frames |
set_na_if |
Replace specific values in vector with NA |
shorten_string |
Shorten character strings |
sjmisc |
Data and Variable Transformation Functions |
split_var |
Split numeric variables into smaller groups |
split_var_if |
Split numeric variables into smaller groups |
spread_coef |
Spread model coefficients of list-variables into columns |
std |
Standardize and center variables |
std_if |
Standardize and center variables |
str_contains |
Check if string contains pattern |
str_end |
Find start and end index of pattern in string |
str_find |
Find partial matching and close distance elements in strings |
str_start |
Find start and end index of pattern in string |
tidy_values |
Clean values of character vectors. |
total_mean |
Row sums and means for data frames |
to_dummy |
Split (categorical) vectors into dummy variables |
to_long |
Convert wide data to long format |
to_value |
Convert factors to numeric variables |
trim |
Trim leading and trailing whitespaces from strings |
typical_value |
Return the typical value of a vector |
var_rename |
Rename variables |
var_type |
Determine variable type |
word_wrap |
Insert line breaks in long labels |
zap_inf |
Convert infiite or NaN values into regular NA |