linear {sjSDM}R Documentation

Linear model of environmental response

Description

specify the model to be fitted

Usage

linear(data = NULL, formula = NULL, lambda = 0, alpha = 0.5)

Arguments

data

matrix of environmental predictors

formula

formula object for predictors

lambda

lambda penalty, strength of regularization: \lambda * (lasso + ridge)

alpha

weighting between lasso and ridge: (1 - \alpha) * |coefficients| + \alpha ||coefficients||^2

Value

An S3 class of type 'linear' including the following components:

formula

Model matrix formula

X

Model matrix of covariates

data

Raw data

l1_coef

L1 regularization strength, can be -99 if lambda = 0.0

l2_coef

L2 regularization strength, can be -99 if lambda = 0.0

Implemented S3 methods include print.linear

See Also

DNN, sjSDM

Examples

## Not run: 
  
# Basic workflow:
## simulate community:
com = simulate_SDM(env = 3L, species = 7L, sites = 100L)

## fit model:
model = sjSDM(Y = com$response,env = com$env_weights, iter = 50L) 
# increase iter for your own data 

coef(model)
summary(model)
getCov(model)

## plot results
species=c("sp1","sp2","sp3","sp4","sp5","sp6","sp7")
group=c("mammal","bird","fish","fish","mammal","amphibian","amphibian")
group = data.frame(species=species,group=group)
plot(model,group=group)

## calculate post-hoc p-values:
p = getSe(model)
summary(p)

## or turn on the option in the sjSDM function:
model = sjSDM(Y = com$response, env = com$env_weights, se = TRUE, 
              family = binomial("probit"), 
              iter = 2L)
summary(model)

## fit model with interactions:
model = sjSDM(Y = com$response,
              env = linear(data = com$env_weights, formula = ~X1:X2 + X3), 
              se = TRUE,
              iter = 2L) # increase iter for your own data 
summary(model)

## without intercept:
model = update(model, env_formula = ~0+X1:X2 + X3)

summary(model)

## predict with model:
preds = predict(model, newdata = com$env_weights)

## calculate R-squared:
R2 = Rsquared(model)
print(R2)

# With spatial terms:
## linear spatial model
XY = matrix(rnorm(200), 100, 2)
model = sjSDM(Y = com$response, env = linear(com$env_weights), 
              spatial = linear(XY, ~0+X1:X2),
              iter = 50L) # increase iter for your own data 
summary(model)
predict(model, newdata = com$env_weights, SP = XY)
R2 = Rsquared(model)
print(R2)

## Using spatial eigenvectors as predictors to account 
## for spatial autocorrelation is a common approach:
SPV = generateSpatialEV(XY)
model = sjSDM(Y = com$response, env = linear(com$env_weights), 
              spatial = linear(SPV, ~0+., lambda = 0.1),
              iter = 50L) # increase iter for your own data 
summary(model)
predict(model, newdata = com$env_weights, SP = SPV)

## Visualize internal meta-community structure
an = anova(model)
plot(an, internal=TRUE)

## non-linear(deep neural network) model
model = sjSDM(Y = com$response, env = linear(com$env_weights), 
              spatial = DNN(SPV,hidden = c(5L, 5L), ~0+.),
              iter = 2L) # increase iter for your own data 
summary(model)
predict(model, newdata = com$env_weights, SP = SPV)


# Regularization
## lambda is the regularization strength
## alpha weights the lasso or ridge penalty:
## - alpha = 0 --> pure lasso
## - alpha = 1.0 --> pure ridge
model = sjSDM(Y = com$response, 
              # mix of lasso and ridge
              env = linear(com$env_weights, lambda = 0.01, alpha = 0.5), 
              # we can do the same for the species-species associations
              biotic = bioticStruct(lambda = 0.01, alpha = 0.5),
              iter = 2L) # increase iter for your own data 
summary(model)
coef(model)
getCov(model)



# Anova 
com = simulate_SDM(env = 3L, species = 15L, sites = 200L, correlation = TRUE)

XY = matrix(rnorm(400), 200, 2)
SPV = generateSpatialEV(XY)
model = sjSDM(Y = com$response, env = linear(com$env_weights), 
              spatial = linear(SPV, ~0+.), 
              iter = 50L) # increase iter for your own data 
result = anova(model)
print(result)
plot(result)

## visualize meta-community structure
plot(result, internal=TRUE)


# Deep neural network
## we can fit also a deep neural network instead of a linear model:
model = sjSDM(Y = com$response,
              env = DNN(com$env_weights, hidden = c(10L, 10L, 10L)),
              iter = 2L) # increase iter for your own data 
summary(model)
getCov(model)
pred = predict(model, newdata = com$env_weights)

## extract weights
weights = getWeights(model)

## we can also assign weights:
setWeights(model, weights)

## with regularization:
model = sjSDM(Y = com$response, 
              # mix of lasso and ridge
              env = DNN(com$env_weights, lambda = 0.01, alpha = 0.5), 
              # we can do the same for the species-species associations
              biotic = bioticStruct(lambda = 0.01, alpha = 0.5),
              iter = 2L) # increase iter for your own data 
getCov(model)
getWeights(model)

## End(Not run)

[Package sjSDM version 1.0.5 Index]