ssrmlp_train {sisireg} | R Documentation |
2-layer MLP with partial sum optimization
Description
Calculates the weights of a 2-layer MLP with respect to the partial sums critereon
Usage
ssrmlp_train(X, Y, std=TRUE, opt='ps', hl = NULL, W = NULL,
k=10, fn=4, eta=0.75, maxIter=1000)
Arguments
X |
matrix with n-dimensional coordinates. |
Y |
array with observations. |
std |
optional: standardizing values if TRUE. |
opt |
optional: optimizing function ('l2' or 'ps'. |
hl |
optional: array tupel with number of perceptrons in each layer. |
W |
optional: previously calculates weights for refining the model. |
k |
optional: number of neighbors per quadrant. |
fn |
optional: quantile for partial sums. |
eta |
optional: constant factor of the gradient algorithm. |
maxIter |
optional: number of iterations for the numeric solver. |
Value
W |
List with weight matrices. |
Author(s)
Dr. Lars Metzner
References
Dr. Lars Metzner (2021) Adäquates Maschinelles Lernen. Independently Published.
Examples
# generate data
set.seed(42)
x <- rnorm(300)
y <- rnorm(300)
z <- rnorm(300) + atan2(x, y)
# coordinates
X <- matrix(cbind(x,y), ncol = 2)
Y <- as.double(z)
# Training
W <- ssrmlp_train(X, Y)
[Package sisireg version 1.1.1 Index]